
23

Using the
Command Line

2
U

sin
g

 th
e Co

m
m

an
d Lin

e

The command line is the primary interface to Unix. While there are many graphical

interfaces for Unix systems, the command-line interface gives you the greatest control

over the system. Furthermore, the command-line interface is virtually identical on

every Unix system you are likely to use, from Mac OS X to Linux, to FreeBSD to

Solaris. Of course there are differences, but there are far more similarities. Once you

learn how to use the command line on Mac OS X, you will be comfortable using it on

any Unix system.

A reminder before we go further: Whenever a task in this book asks you to type some-

thing, always press r at the end of the line unless the task description specifically

tells you not to.



Getting to the Command
Line
The primary way to get to the command line

in Mac OS X is with the Terminal application.

Terminal is an Aqua application that allows

you to open multiple windows, each of which

provides a place to enter commands and see

output from those commands.

Because Terminal is running in the Aqua

layer of Mac OS X, you can do anything you’d

expect from a Mac graphical application—

you can print, copy text and paste into other

windows, and adjust preferences such as

color and font size.

Practically all of your command-line work in

Mac OS X will be done using Terminal.

To open Terminal:

◆ Locate the Terminal application in the

Finder by going to the Applications folder

and opening the Utilities folder.

◆ Double-click the Terminal application icon. 

A Terminal window containing a shell

prompt opens (Figure 2.1). 

24

Chapter 2

G
et

ti
n

g
 t

o
 t

h
e 

Co
m

m
an

d 
Li

n
e

Figure 2.1 This is
a screen shot of 
a window opened
in the Terminal
application. 

✔ Tips

■ Put the Terminal icon in the Dock. You

will be using it often.

■ When adjusting your Terminal preferences

(under Window settings in the Terminal

menu), always stick with a mono-spaced

font like Monaco (the default) or Courier.

Command-line software assumes you are

using a mono-spaced (also called fixed-

width) font, and proper text layout in

Terminal depends on this.

■ Experiment with different colors and font

sizes for the text and background in

Terminal. For example, we prefer 12-point

bright green text on a black background

because it looks like the screen on an

“old-fashioned” computer terminal. 

■ Open more than one Terminal window

(by clicking on New Shell under the File

menu), and give each one a different color

scheme as a way to differentiate them.

You can have as many Terminal windows

open as you like.

CursorShell prompt



Figure 2.3 When you click the Login button, you are
switched directly to the Darwin layer of Mac OS X and
see the Darwin log-in prompt.

Darwin/BSD (yourhostname.domainname.com) (console)

login:

Figure 2.2 You can use the name “>console” to log in
to the command line instead of Aqua.

25

Using the Command Line

G
ettin

g
 to

 th
e Co

m
m

an
d Lin

e

Other ways to get to the
command line

Using Terminal is by far the most common

way to get to the Mac OS X command line,

but there are other ways that are useful after

you have become proficient in using Unix.

One way is to log in directly to the command

line instead of going through the Terminal

application in Aqua. (Note: If you do this,

the Aqua interface will not be available

until you log out of the command line.)

To log in to the command line:

1. Enter >console as your user name in the

log-in screen. Leave the Password field

empty (Figure 2.2). 

2. Click Login or press r.

This switches you directly to the Darwin

layer of Mac OS X. A command-line log-

in prompt appears, in white text on a

black background (Figure 2.3). 

To go back to the Aqua log-in screen,

press CD. Otherwise, proceed to

log in to the Darwin layer.

3. Type your short user name, and press

r (remember to press r after

typing each task item). Note: On every

other Unix system in the world, this would

be your user name, but Mac OS X uses the

concept of short user name to distinguish

it from the regular Mac user name. 

A command-line password prompt appears.

4. Type your password at the Password

prompt. 

Nothing appears on the screen as you

type. If you get it wrong, you get another

Login prompt, and you are back at step 4.

If you get it right, the shell prompt

appears on your screen. 

5. Type logout to return to the Aqua log-in

screen.

There is a long pause before Aqua starts

up—as much as a minute. Be patient.

Another way to get to the command line is to

start up the machine into single-user mode.

This boots the machine directly into the Dar-

win layer so that the command line comes up

instead of Aqua. You cannot start Aqua from

this mode without rebooting. You should only

boot to single-user mode if you are extremely

comfortable using Unix. See Chapter 11,

“Introduction to System Administration,” to

learn how to boot into single-user mode.



26

Chapter 2

U
n

de
rs

ta
n

di
n

g
 t

h
e 

S
h

el
l 

Pr
o

m
pt

Understanding the 
Shell Prompt
The first thing you see in the Terminal win-

dow is the shell prompt (as we saw in Figure

2.1). The shell is a program that sits between

you, the user, and the actual operating sys-

tem. You type commands to the shell, and

the shell reads the input, interprets its mean-

ing, and executes the appropriate com-

mands. This is similar to the way the Finder

accepts your mouse clicks, interprets their

meaning (single click? double click? drag?),

and then performs an appropriate action

(select item, open item, move item). The shell

prompt is a string of text telling you that

your shell is waiting for a command line.

The Shell window (in the Terminal folder

under Preferences) allows you to specify

which shell the Terminal application will use

—but don’t change the default until you have

mastered the material at least through the end

of Chapter 5, “Using Files and Directories.”

Throughout this book we assume you are

using the default shell (tcsh) unless noted 

otherwise.

Now that you know what the shell is, let’s

start using it.

A Variety of Shells

There are many different shell programs

available. The default shell on Mac OS X is

called tcsh. Other shells available on Mac

OS X are sh, csh, and zsh.

The sh shell is the oldest commonly used

shell—sh just means “shell.” It is also called

the Bourne shell after its principal author,

Steve Bourne of Bell Labs. Many important

system files are actually small programs

(scripts) written using sh commands (see

Chapter 9, “Creating and Using Scripts”).

The csh shell borrows some of its command

syntax from the C programming language

(hence the c) and was designed to be an

improvement over the sh shell for interac-

tive use. The tcsh shell is a more advanced

form of the csh shell (the t comes from two

old DEC operating systems). Many Unix

experts consider the csh shell a poor tool 

for creating scripts. A classic essay making

that case is at www.faqs.org/faqs/unix-faq/

shell/csh-whynot/.

You can learn more about the tcsh shell at

www.tcsh.org.

The zsh shell was designed as an improve-

ment on another shell, ksh (which doesn’t

come with Mac OS X). It has a command

syntax very different from csh and tcsh. You

can learn more about zsh at www.zsh.

org. If you find out why it is called zsh, let

me know.

Another common shell worth mentioning 

is bash (for “Bourne Again Shell”—one of

those Unix puns we warned you about), an

improved version of the old standby sh.

Although bash doesn’t come with Mac OS

X, it is easily installed. See Chapter 15,

"More Open-Source Software" (at

www.peachpit.com/vqp/umox), to learn

how to install bash.



27

Using the Command Line

U
sin

g
 a Co

m
m

an
d

Figure 2.4 When you type the command line ls /Developer/Tools, this is what you see.

[localhost:~] vanilla% ls /Developer/Tools

BuildStrings              RezWack                   cvswrappers

CpMac                     SetFile                   lnresolve

DeRez                     SplitForks                pbhelpindexer

GetFileInfo               UnRezWack                 pbprojectdump

MergePef                  WSMakeStubs               pbxcp

MvMac                     agvtool                   pbxhmapdump

ResMerger                 cvs-unwrap                sdp

Rez                       cvs-wrap                  uninstall-devtools.pl

[localhost:~] vanilla%

Using a Command
To use commands, you type them into the

shell at the prompt. The shell executes the

command line and displays output (if any),

and then gives you another shell prompt.

When the shell prompt comes up again, even

if there’s no other output, your shell is ready

to accept another command.

Many command lines (but not all) produce

output before returning a new shell prompt.

It is quite common in Unix for a command

to produce no visible output if it is successful

(if it fails, a command should always produce

output). In Unix, silence implies success. 

To run a command:

◆ ls /Developer/Tools

This is the ls command, which lists the

names of files and directories. The output

of the command—a list of the tools

installed in the Developer/Tools directory

—appears and then a new shell prompt

follows (Figure 2.4).

The command line you just used consists

of two parts: the command (ls) and an

argument (/Developer/Tools) 



The parts of a command line

The parts of a command line are separated

by spaces. Basic command lines have up to

four kinds of components:

◆ The command (required)

◆ Options (or switches or flags) (optional)

◆ Arguments (optional)

◆ Operators and special characters (optional)

Figure 2.5 shows the different parts of a typ-

ical command line (you’ll recognize this as

the command from Chapter 1 that searched

for all instances of the word success in a par-

ticular directory).

Each command may have multiple options

and multiple arguments.

About the “command” part of
the command line

When you enter a command line, the shell

assumes that the first item on the line is a

command.

There are two types of commands: those that

are built into the shell you are using and those

that are separate files somewhere on your disk.

The overwhelming majority of Unix com-

mands are of the latter type—that is, Unix

commands are usually individual files that

are actually small (or not-so-small) programs

that perform a specific function, such as list-

ing the contents of a directory.

28

Chapter 2

U
si

n
g

 a
 C

o
m

m
an

d

Figure 2.5 The parts of a command line are separated
by spaces, and basic command lines have up to four
kinds of items in them. This shows the separate parts
of the command line. 

option

command operator

argument

grep  -1 success  *.txt >  outfile



Your PATH—how the shell finds
commands

When the shell sees a command, it evaluates

whether it is a built-in command—that is,

one that is part of the shell itself (for exam-

ple, the cd command is built into the tcsh

shell). If the command is not built in, then

the shell assumes the command is an actual

file on the disk and looks for it.

If the command does not contain any / (slash)

characters, then the shell searches in a list of

places known as your PATH for a file whose

name matches the command name (see the

description of the PATH environment variable

in Chapter 7, “Configuring Your Unix

Environment”). If the command contains any

/ characters, then the shell assumes you are

telling it not to search your PATH but instead

to interpret the command as a relative or

absolute path to the command file. Relative

and absolute paths are two ways of specify-

ing Unix filenames on the command line,

and we explain relative and absolute paths in

Chapter 5, “Using Files and Directories.”

29

Using the Command Line

U
sin

g
 a Co

m
m

an
d

Unix Commands vs. 

Mac Applications

Traditional Macintosh applications tend

to have a great many features that allow

you to accomplish complete projects all

from within one application. For example,

you can create and manipulate complex

documents in a page-layout program.

Unix takes a different approach.

In Unix, commands tend to be focused on

specific steps you use in a variety of differ-

ent tasks. For example, where the Mac has

a single application (the Finder) for per-

forming many tasks involving files, Unix

uses a collection of separate “applica-

tions”: the ls command lists the contents

of a directory, the cd command switches

from one directory to another, the cp

command copies files, the mv command

renames files, and so on. 

This difference in approach shows a key

difference in philosophy between the tra-

ditional Mac and Unix ways of thinking.

In Unix, you are expected to combine

commands in various ways to accomplish

your work; in traditional Mac applica-

tions, the program’s author is expected to

anticipate every kind of task you might

want to accomplish and provide a way of

doing that.

Unix provides a collection of smaller,

“sharper” tools and expects you to decide

how to put them together to accomplish

your goals.



About command options

Options (also called switches or flags) modify

the way a command behaves. Most com-

mands have at least a few options available,

and many commands have a large number 

of options. As we noted when we talked

about Unix’s flexibility in Chapter 1, options

frequently can be combined.

See Chapter 3, “Getting Help and Using the

Unix Manuals,” to learn how to ascertain the

available options for each command.

To use one option with a command:

◆ ls -s /Developer/Tools

The -s option modifies the output of the

ls command, asking for the size of each

file. That number (in blocks, which corre-

spond to disk space) is now displayed

alongside each filename (Figure 2.6). 

30

Chapter 2

U
si

n
g

 a
 C

o
m

m
an

d

Figure 2.6 When you type this command line, ls -s /Developer/Tools, which has one option, the output lists the
size of each file in blocks.

[localhost:~] vanilla% ls -s /Developer/Tools

total 1872

32 BuildStrings           32 RezWack                 8 cvswrappers

56 CpMac                  40 SetFile                24 lnresolve

224 DeRez                  40 SplitForks             48 pbhelpindexer

32 GetFileInfo            40 UnRezWack              40 pbprojectdump

152 MergePef              336 WSMakeStubs            48 pbxcp

56 MvMac                  32 agvtool                96 pbxhmapdump

40 ResMerger               8 cvs-unwrap            224 sdp

232 Rez                     8 cvs-wrap               24 uninstall-devtools.pl

[localhost:~] vanilla%



Figure 2.7 This shows there’s no difference between what you get when you use the  -s and -k options separately
and when you combine them in the -sk option.

[localhost:~] vanilla% ls -s -k /Developer/Tools

total 614

14 BuildStrings     28 MvMac            18 SplitForks        1 cvs-wrap

28 CpMac            19 ResMerger        18 UnRezWack         3 cvswrappers

116 DeRez           124 Rez              15 agvtool          22 pbhelpindexer

14 GetFileInfo      14 RezWack          92 cplutil

68 MergePef         18 SetFile           2 cvs-unwrap

[localhost:~] vanilla% ls -sk /Developer/Tools

total 614

14 BuildStrings     28 MvMac            18 SplitForks        1 cvs-wrap

28 CpMac            19 ResMerger        18 UnRezWack         3 cvswrappers

116 DeRez           124 Rez              15 agvtool          22 pbhelpindexer

14 GetFileInfo      14 RezWack          92 cplutil

68 MergePef         18 SetFile           2 cvs-unwrap

[localhost:~] vanilla%

31

Using the Command Line

U
sin

g
 a Co

m
m

an
d

Here’s a case where we want to combine two

options in a command. The -s option gave

us file sizes, but using a unit of measurement

(blocks) that varies depending on how our

disk was formatted. If we add the -k option,

the sizes are shown in kilobytes, regardless of

the block size on our disk.

To use multiple options with a command:

◆ ls -s -k /Developer/Tools 

Simply supply both of the options you want.

◆ You can combine two or more options:

ls -sk /Developer/Tools

This produces the same output as in the

first case and saves typing two characters.

Figure 2.7 shows the output of both com-

mand lines. (Unix commands are so short

and cryptic because the programmers who

invented them wanted to avoid typing.) 



About command arguments
Most commands accept one or more argu-

ments. An argument is a piece of informa-

tion the command acts upon, such as the

name of a file to display. It’s similar to the

object of a sentence. 

You used a command with a single argument

in the tasks above. The single argument was

/Developer/Tools, the folder whose contents

you wanted to list. A command line can con-

tain multiple arguments.

To use multiple arguments with a

command:

◆ ls /Developer /Developer/Tools

You simply add as many arguments as

needed on the command line, separated

by spaces. In this example, the ls com-

mand gets two arguments and lists the

contents of both directories (Figure 2.8).

32

Chapter 2

U
si

n
g

 a
 C

o
m

m
an

d

✔ Tips

■ You can combine multiple options with

multiple arguments—for example, ls -

sk /Developer /Developer/Tools

■ Remember that the shell expects the

parts of a command line to be separated

by spaces. If an argument has spaces in it,

then you need to protect the embedded

space(s) from being interpreted as separa-

tors. See “About Spaces in the Command

Line” below.

Operators and special
characters in the command line

A number of special characters often appear

in command lines, most frequently the > and

& characters. 

These special characters are used for a vari-

ety of powerful features that manipulate the

Figure 2.8 The ls command gets two arguments, /Developer and /Developer/Tools, and lists the contents of both
directories.

[localhost:~] vanilla% ls /Developer /Developer/Tools

/Developer:

Applications              Headers                   Palettes

Documentation             Java                      ProjectBuilder Extras

Examples                  Makefiles                 Tools

/Developer/Tools:

BuildStrings              RezWack                   cvswrappers

CpMac                     SetFile                   lnresolve

DeRez                     SplitForks                pbhelpindexer

GetFileInfo               UnRezWack                 pbprojectdump

MergePef                  WSMakeStubs               pbxcp

MvMac                     agvtool                   pbxhmapdump

ResMerger                 cvs-unwrap                sdp

Rez                       cvs-wrap                  uninstall-devtools.pl

[localhost:~] vanilla%



shell prompt. In those cases, you need a way

to stop a command once you have started it.

Here are two ways to stop a command.

If you are waiting for the shell prompt to

appear, then you use CC to stop the

command.

To stop a command with Control-C:

◆ Press C (usually at the lower left of

your keyboard) and simultaneously press

C. This sends what is called an “interrupt”

signal to the command, which should stop

running and bring up a shell prompt.

✔ Tip

■ If using CC doesn’t work, as a last

resort you can close the Terminal win-

dow, overriding the warning that appears.

The stuck command will be stopped. It

doesn’t hurt Unix for you to close the

window; it’s just annoying for you.

To stop a command using the kill

command:

◆ kill pid 

You use the kill command to stop other

commands if you already have a shell

prompt. You need to know the process ID

of the command you want to stop. For

details on obtaining process ID numbers,

see “About Commands, Processes, and

Jobs,” later in this chapter.

The kill command doesn’t always kill a

process. It actually sends a signal asking

it to stop. The default signal is hangup. 

Sometimes that isn’t strong enough. In

those cases you can use signal 9, the kill

signal that cannot be ignored:

kill -9 pid

Using signal 9 terminates the target with

extreme prejudice—the stopped command

has no chance to clean up before exiting

and may leave temporary files around. 

33

Using the Command Line

U
sin

g
 a Co

m
m

an
d

S y m b o l E x a m p l e  a n d  M e a n i n g

> command > file 

Redirect output to file.

>> command >> file

Redirect output, appending to file.

< command < file

command gets input from file.

| cmdA | cmdB (sometimes called the pipe 
character).
Pipe output of cmdA into cmdB.

& command &

Run command in background, returning to shell
prompt at once.

` ` cmdA `cmdB`

Execute cmdB first, then use output as an argu-
ment to cmdA (often called backtick characters). 

Operators and Special Characters

Table 2.1

output of commands. The most common of

these operators make it easy to save the out-

put of a command to a file, feed the output of

one command into another command, use

the output of one command as an argument

to another command, and run a command

line “in the background” (that is, letting you

get a shell prompt back even if the command

takes an hour to run).

The use of these powerful features is covered

later in this chapter (see “Creating Pipelines

of Commands”).

Table 2.1 summarizes the most frequently

used command-line operators and special

characters, with examples of their use.

Stopping commands

Some commands run for a long time, and

sometimes they can get “stuck” (perhaps

because a command is waiting for some other

process to finish, or because of a network

problem, or for any number of other reasons)

and neither give output nor return you to a



Getting help for a command

Most commands have associated documen-

tation in the Unix help system. Unfortun-

ately, Unix help is almost always written for

the experienced programmer, not for the

novice user, so we have devoted all of

Chapter 3 to clarifying it.

You can skip ahead to Chapter 3 and come

back if you like, but here is the bare mini-

mum you need to at least begin to explore

the help available for commands.

To read the Unix manual for a command:

1. man command

This displays the Unix manual for any

given command. Figure 2.9 shows the

first screen of the manual for the ls com-

mand, displayed by typing man ls.

34

Chapter 2

U
si

n
g

 a
 C

o
m

m
an

d

Figure 2.9 When you request help from the manuals, such as man ls, you get an explanation (this only shows a
partial amount of output).

LS(1)                       System Reference Manual                      LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [-ACFLRSTWacdfgiklnoqrstux1] [file ...]

DESCRIPTION

For each operand that names a file of a type other than directory, ls

displays its name as well as any requested, associated information.  For

each operand that names a file of type directory, ls displays the names

of files contained within that directory, as well as any requested, asso-

ciated information.

If no operands are given, the contents of the current directory are dis-

played.  If more than one operand is given, non-directory operands are

displayed first; directory and non-directory operands are sorted sepa-

rately and in lexicographical order.

The following options are available:

-A      List all entries except for `.’ and `..’. Always set for the su-

per-user.

-C      Force multi-column output; this is the default when output is to

The man command displays the Unix

manual entry for the named command

one screen at a time. 

2. To move forward one screen, press the

z once.

3. To move backward one screen, press B
once.

4. To quit from the man command and

return to a shell prompt: Q

You should be back at the shell prompt.



Using Common Commands
You’ve already learned how to perform some

basic Unix commands, but now let’s run

through a series of commands you’ll use on a

regular basis (we’ll go into detail on several of

these in later chapters).  

To perform some basic commands:

1. cd

The cd command (“change directory”)

produces no output. Used with no argu-

ments, it tells your shell to set your “work-

ing directory” as your home directory. 

2. pwd

This command shows your present work-

ing directory —where you “are” in the Unix

file system. Figure 2.10 shows typical

output from the pwd command.

35

Using the Command Line

U
sing Co

m
m

o
n Co

m
m

ands

3. ls 

Figure 2.11 shows typical output from

ls, which lists the names of files and

directories. The actual output depends 

on what you have in your home directory. 

4. echo “Hello there.”

The output from the echo command con-

sists of its arguments (in this case, the

words  “Hello there”) (Figure 2.12). It

also automatically adds a new line (try it

with the -n option to not add the new line). 

Figure 2.10 The pwd command shows your present working directory—where you “are” in the Unix file system. 

[localhost:~] vanilla% pwd

/Users/vanilla

[localhost:~] vanilla%

Figure 2.11 The ls command lists the names of files and directories. The actual output will depend on what you have
in your home directory. 

[localhost:~] vanilla% ls

Desktop   Documents Library   Movies    Music     Pictures  Public    Sites

[localhost:~] vanilla%

Figure 2.12 The output from the echo command consists of two arguments (in this case, “Hello there”).

[localhost:~] vanilla% echo “Hello there.”

Hello there.

[localhost:~] vanilla%

pwd—Compare with Aqua

In Aqua, the Finder tells you where you

are using the names and positions of win-

dows. One window is always the active

window, and the title bar of that window

tells you the name of the folder. If the win-

dow is the Finder window, then the direc-

tory name in the title bar is the equivalent

of what the Unix pwd command shows. 



36

Chapter 2

U
si

ng
 C

o
m

m
o

n 
Co

m
m

an
ds

7. ls 

Figure 2.14 shows the output from the

ls command. The files listed now include

file.txt, created in the previous step. 

8. cat file.txt

The cat command, derived from the word

concatenate, displays the contents of the file

(Figure 2.15), again based on the com-

mand in step 6 (concatenate actually means

“combine”; if you read the Unix manual sec-

tion on catwith man cat, you will see how

it can be used to combine several files). 

5. echo “Hello $USER, welcome to Unix.”

Figure 2.13 shows output from echo,

using the $USER environment variable in

an argument. $USER is replaced by your

short user name (the $ usually indicates

that the following term is a variable, and

the shell substitutes the value of the vari-

able before executing the command; we’ll

go into more detail on environment vari-

ables in Chapter 7). 

6. echo “$USER created this” > file.txt

In this case, the output from the echo

commands doesn’t go to your screen, but

rather it is redirected into the file named

file.txt, either creating the file with this

specific content or copying over anything

within it. For more on redirection and

output, see “About Standard Input and

Output,” later in this chapter.

echo—Compare with Aqua

The Aqua interface doesn’t really have any

equivalent of the echo command. Echo

exemplifies a tool that is unique to com-

mand-line interfaces.

Figure 2.13 This shows the output from echo, using the $USER environment variable in an argument. $USER will be
replaced by your short username.

[localhost:~] vanilla% echo “Hello $USER, welcome to Unix.”

Hello vanilla, welcome to Unix.

[localhost:~] vanilla%

Figure 2.14 This output from the ls command now includes file.txt.

[localhost:~] vanilla% ls

Desktop   Library   Music     Public    file.txt

Documents Movies    Pictures  Sites

[localhost:~] vanilla%

Figure 2.15 The cat command, derived from the word concatenate, displays the contents of a file.

[localhost:~] vanilla% cat file.txt

vanilla created this

[localhost:~] vanilla%



37

Using the Command Line

U
sin

g
 Co

m
m

o
n

 Co
m

m
an

ds

9. cp file.txt filecopy.txt

cp stands for copy. You have made a 

copy of file.txt called filecopy.txt.

Run the ls command again to see it

(Figure 2.16).

10. rm filecopy.txt

The rm command removes the file. Run

the ls command again to confirm that

it is gone.

11. mkdir testdir

The mkdir command creates (or makes)

a new directory (that’s what Unix calls

folders), in this instance named testdir. 

12. Go back out to the Finder (under Aqua)

and open your home directory. You

should see the file file.txt and the

directory testdir (Figure 2.17).

Figure 2.16 Running the ls command again shows you have made a copy of file.txt called filecopy.txt.

[localhost:~] vanilla% ls

Desktop      Library      Music        Public       file.txt

Documents    Movies       Pictures     Sites        filecopy.txt

[localhost:~] vanilla%

Figure 2.17 The Finder window now shows the new file and directory.

cp—Compare with Aqua

In the Finder, you copy files by o-

dragging them, or by selecting them and

choosing File > Duplicate. After copying

them, you can rename them in a separate

operation.

At the command line, you select files to

be copied by naming them, and then

enter their new names at the same time.



38

Chapter 2

U
si

n
g

 C
o

m
m

o
n

 C
o

m
m

an
ds

13. cd testdir 

You have told your shell to change from

the current directory to the directory

named testdir. Notice that your shell

prompt has changed to reflect your new

directory (Figure 2.18). 

14. pwd

This confirms that you are indeed in the

new directory (Figure 2.19).

15. date

The date command displays the current

date and time (Figure 2.20); unless

you’ve perfected time travel, your output

will be different. 

16. date > dates.txt

This redirects the output of the date com-

mand into a file named dates.txt. It is often

useful to save the output of a command.

17. date >> dates.txt

This time we redirect the output using

the >> operator (this redirects the out-

put and appends it to the file instead of

replacing the contents).

18. cat dates.txt

The file contains the results of both redi-

rects from steps 16 and 17  (Figure 2.21).

19. mv dates.txt newname.txt

The mv command renames (or moves) a

file. In Unix, a file’s name is actually the

name of its location, so the same com-

mand is used to rename and to move

files. Run the ls command to see that

the file dates.txt has been renamed to

newname.txt (Figure 2.22).

Figure 2.18 After you use the cd command, the shell
prompt changes.

[localhost:~] vanilla% cd testdir

[localhost:testdir] vanilla%

Figure 2.19 Running the pwd command again shows
your new working directory.

[localhost:testdir] vanilla% pwd

/Users/vanilla/testdir

[localhost:testdir] vanilla%

Figure 2.20 The date command displays the current
date and time.

[localhost:testdir] vanilla% date

Thu Apr  4 14:56:35 PST 2002

[localhost:testdir] vanilla%

Figure 2.21 Using redirection, you get a file that
contains the results of both redirects.

[localhost:testdir] vanilla% date > dates.txt

[localhost:testdir] vanilla% date >> dates.txt

[localhost:testdir] vanilla% cat dates.txt

Thu Apr  4 15:00:41 PST 2002

Thu Apr  4 15:00:47 PST 2002

[localhost:testdir] vanilla%

Figure 2.22 Running the ls command again shows
the renamed file.

[localhost:testdir] vanilla% ls

newname.txt

[localhost:testdir] vanilla%



39

Using the Command Line

U
sin

g
 Co

m
m

o
n

 Co
m

m
an

ds

20. date >> dates.txt

The >> operator creates a file if it doesn’t

already exist (Figure 2.23).

21. rm *.txt

The * operator is used in the command

line as a wildcard to match all the files

ending in .txt. As a result, the rm com-

mand actually receives two arguments—

dates.txt and newname.txt—and acts

on both of them. For more on wildcard

operators, see “Wildcards,” later in this

chapter. Run the ls command to con-

firm that there are now no files in the

current directory; you simply get a shell

prompt back (Figure 2.24).

22. cd

This takes you back to your home direc-

tory. Notice that your shell prompt

changes (Figure 2.25).

Figure 2.23 Running the ls command again shows the
file created with the >> operator.

[localhost:testdir] vanilla% ls

dates.txt newname.txt

[localhost:testdir] vanilla%

Figure 2.24 Note that when there is nothing to list,
the ls command gives no output.

[localhost:testdir] vanilla% ls

[localhost:testdir] vanilla%

Figure 2.25 Your shell prompt changes when you use
the cd command.

[localhost:testdir] vanilla% cd

[localhost:~] vanilla%

< and >—Compare with Aqua

The Aqua interface has no equivalent to the

command lines’ ability to redirect output.

This is a good example of the difference

between the Unix command-line interface

and a graphical interface such as Aqua.

The command line is text oriented: Every-

thing is assumed to be text output and can

be fed into anything else. (See especially

the | operator later in this chapter, in

“Creating Pipelines of Commands”).

In Aqua, each application is assumed to

produce output of a different kind, and

applications cannot normally feed their

output directly into each other without

saving to a file first. 

cat—Compare with Aqua

The cat command not only displays a sin-

gle file (as shown in step 8 above), but it

can be given multiple filenames as argu-

ments in order to display them all, in one

long output (hence the name concatenate).

The closest thing Aqua has to the cat

command is the ability to open multiple

files with one application by selecting sev-

eral files and dragging them all onto an

application icon, but there isn’t really a

direct equivalent. 

mv—Compare with Aqua

In the Finder, you move files by dragging

them to their new location. Renaming

them is a separate operation.

At the command line, you can move and

rename files in the same operation.



About Commands,
Processes, and Jobs 
Commands fall into two categories: some

commands are built into the shell you are

using (for example, the cd command), while

most are actually separate programs.

To see a list of basic Unix commands:

◆ ls /bin

The /bin directory contains all of the

commands we used in the examples ear-

lier in this chapter. Each command

appears as a separate file (Figure 2.26).

Notice that your shell program (tcsh) is

included. It, too, is essentially a com-

mand, albeit a larger, interactive one.

✔ Tip

■ Other places to see lists of Unix com-

mands are /usr/bin, /sbin, and

/usr/sbin. (The bin is short for “binary,”

as most Unix commands are binary files.

Not all commands are binary files; some

are executable text files or scripts.) 

40

Chapter 2

A
bo

u
t 

Co
m

m
an

ds
, P

ro
ce

ss
es

, a
n

d 
Jo

bs

Figure 2.26 The /bin directory contains all of the commands we used in the examples earlier in this chapter.

[localhost:~] vanilla% ls /bin

[          csh        echo       ln         ps         sh         test

bash       date       ed         ls         pwd        sleep      zsh

cat        dd         expr       mkdir      rcp        stty

chmod      df         hostname   mv         rm         sync

cp         domainname kill       pax        rmdir      tcsh

[localhost:~] vanilla%



To see all the processes you own:

◆ ps -U username

Fill in your short user name for username.

Figure 2.27 shows typical output with a

variety of programs running. Notice how

even Aqua programs like iTunes are listed

—underneath it all, they are all running

on Unix.

The first column of output lists the 

PID of each process. (Review “Stopping

Commands” earlier in this chapter for 

an example of using a PID number.)

41

Using the Command Line

A
bo

u
t Co

m
m

an
ds, Pro

cesses, an
d Jo

bs

Every time you issue a command that is not

already built into a shell, you are starting

what Unix calls a process or a job. You will

encounter both terms in Unix literature.

Every process is assigned an identification

number when it starts up, called the PID

(Process ID), as well as its own slice of mem-

ory space (this is one of the reasons why

Unix is so stable—each process has its own

inviolable memory space). At any given

moment, there are dozens of processes run-

ning on your computer.

Figure 2.27 When you type ps -U username, you see the variety of programs running, even Aqua programs like iTunes.

[localhost:~] vanilla% ps -U vanilla

PID  TT  STAT      TIME COMMAND

68  ??  Ss     0:19.58 /System/Library/Frameworks/ApplicationServices.framew

366  ??  Rs    99:34.05 /System/Library/Frameworks/Kerberos.framework/Servers

1065  ??  Ss    14:29.69 /System/Library/CoreServices/WindowServer console    

1066  ??  Ss     0:02.51 /System/Library/CoreServices/loginwindow.app/loginwin

1071  ??  Ss     0:03.85 /System/Library/CoreServices/pbs       

1075  ??  S      2:05.73 /System/Library/CoreServices/Finder.app/Contents/MacO

1076  ??  S      0:21.82 /System/Library/CoreServices/Dock.app/Contents/MacOS/

1077  ??  S      0:28.22 /System/Library/CoreServices/SystemUIServer.app/Conte

1078  ??  S      0:00.23 /Applications/iTunes.app/Contents/Resources/iTunesHel

1080  ??  R    493:55.67 /System/Library/CoreServices/Classic Startup.app/Cont

1081  ??  S      1:56.28 /Applications/Utilities/Terminal.app/Contents/MacOS/T

1106  ??  S      7:38.94 /Applications/Acrobat Reader 5.0/Contents/MacOS/Acrob

1142  ??  S    332:09.07 /Applications/Mozilla/Mozilla.app/Contents/MacOS/Mozi

1357  ??  Ss     0:00.45 /usr/bin/hdid -f /Users/vanilla/Desktop/Eudora 51b21.

1363  ??  S      0:00.90 /Applications/Preview.app/Contents/MacOS/Preview -psn

1365  ??  S      0:01.13 /Applications/TextEdit.app/Contents/MacOS/TextEdit -p

1436  ??  S      1:25.06 /Applications/Eudora/Eudora 5.1 (OS X) /Applications/

1082 std  Ss     0:00.64 -tcsh (tcsh)

[localhost:~] vanilla%



To see all the processes on the system:

1. ps -aux

Figure 2.28 shows typical output from

using the -aux options to ps (for

processes). 

2. ps -auxw

Figure 2.29 shows output when using

the -auxw options. The w makes the out-

put wider. Table 2.2 shows the common

options for the ps command.

42

Chapter 2

A
bo

u
t 

Co
m

m
an

ds
, P

ro
ce

ss
es

, a
n

d 
Jo

bs

✔ Tips

■ You can use two w’s to make the output

even wider—for example, ps -auxww.

■ Combine the -U option with the -aux

options to show a particular user’s

processes: ps -aux -U username.

Figure 2.28 Using the -aux options to ps (for processes) gives you this typical output.

[localhost:~] vanilla% ps -aux

USER      PID %CPU %MEM      VSZ    RSS  TT  STAT      TIME COMMAND

matisse  1142   6.9 12.2   160180  80116  ??  S    333:52.71 /Applications/Mozil

matisse  1080   6.0 18.3  1107988 119684  ??  R    507:33.80 /System/Library/Cor

matisse   366   3.4  0.1     5356    944  ??  Ss    99:54.01 /System/Library/Fra

matisse  1065   0.6  3.9    54776  25692  ??  Ss    14:43.58 /System/Library/Cor

root       72   0.0  0.0     1276    100  ??  Ss     1:49.77 update

root       75   0.0  0.0     1296    104  ??  Ss     0:00.01 dynamic_pager -H 40

root      100   0.0  0.1     2332    372  ??  Ss     0:01.09 /sbin/autodiskmount

root      125   0.0  0.2     3836   1516  ??  Ss     0:03.41 configd

root      163   0.0  0.0     1288    156  ??  Ss     0:03.17 syslogd

root      184   0.0  0.4    20736   2416  ??  Ss     0:00.24 /usr/libexec/CrashR

root      206   0.0  0.1     1580    404  ??  Ss     0:02.03 netinfod -s local

root      213   0.0  0.1     2448    520  ??  Rs     0:08.26 lookupd

root      223   0.0  0.0     1528    304  ??  S<s    1:03.80 ntpd -f /var/run/nt

root      231   0.0  0.3     8964   2040  ??  S      1:15.81 AppleFileServer

root      236   0.0  0.2     3104   1124  ??  Ss     0:08.35 /System/Library/Cor

root      243   0.0  0.0     1288    116  ??  Ss     0:00.00 inetd

root      254   0.0  0.0     1276     84  ??  S      0:00.00 nfsiod -n 4

root      255   0.0  0.0     1276     84  ??  S      0:00.00 nfsiod -n 4

root      263   0.0  0.0     2192    316  ??  Ss     0:00.04 automount -m /Netwo

root      266   0.0  0.2     3740   1148  ??  S      0:00.27 DirectoryService

root      273   0.0  0.1     2432    932  ??  Ss     0:40.56 /usr/sbin/httpd

www       277   0.0  0.1     2432    600  ??  S      0:00.25 /usr/sbin/httpd

root      282   0.0  0.1     2392    960  ??  Ss     0:01.60 /System/Library/Cor

[localhost:~] vanilla%



43

Using the Command Line

A
bo

u
t Co

m
m

an
ds, Pro

cesses, an
d Jo

bs

O p t i o n M e a n i n g

-a Display processes owned by all users.
-u Display more information, including

CPU usage, process ownership, and
memory usage.

-x Include any process not started from a
Terminal window.

-w Wide listing—display the full command
name of each process up to 132 charac-
ters per line. If more than w is used,
adding ps will ignore the width of your
Terminal window.

-U username Show process for specified user.

Common Options for ps

Table 2.2

Figure 2.29 Using the -auxw options to ps gives you this partial output; adding the w gives you a wider output.

[localhost:~] vanilla% ps -auxw

USER      PID %CPU %MEM      VSZ    RSS  TT  STAT      TIME COMMAND

matisse   366   3.2  0.1     5356    944  ??  Rs    99:55.39

/System/Library/Frameworks/Kerberos.framework/Servers/CCacheServer.app/

matisse  1080   3.1 18.3  1107988 119692  ??  S    508:31.05 /System/Library/CoreServices/Classic

Startup.app/Contents/Resources/Tru

matisse  1142   2.1 12.2   160180  80116  ??  S    334:01.62

/Applications/Mozilla/Mozilla.app/Contents/MacOS/Mozilla /Applications/

matisse  1081   1.3  1.6    76212  10168  ??  S      2:04.99

/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal -psn_0_222

matisse  1065   0.3  3.9    54756  25672  ??  Ss    14:46.19 /System/Library/CoreServices/WindowServer

console      

root       75   0.0  0.0     1296    104  ??  Ss     0:00.01 dynamic_pager -H 40000000 -L 160000000 -S

80000000 -F /private/var/vm/s

root      100   0.0  0.1     2332    372  ??  Ss     0:01.09 /sbin/autodiskmount -va

root      125   0.0  0.2     3836   1516  ??  Ss     0:03.41 configd

root      163   0.0  0.0     1288    156  ??  Ss     0:03.17 syslogd

root      184   0.0  0.4    20736   2416  ??  Ss     0:00.24 /usr/libexec/CrashReporter

root      206   0.0  0.1     1580    404  ??  Ss     0:02.03 netinfod -s local

root      213   0.0  0.1     2448    520  ??  Ss     0:08.26 lookupd

root      223   0.0  0.0     1528    304  ??  S<s    1:03.81 ntpd -f /var/run/ntp.drift -p

/var/run/ntpd.pid

root      231   0.0  0.3     8964   2040  ??  S      1:15.84 AppleFileServer

root      236   0.0  0.2     3104   1124  ??  Ss     0:08.35

/System/Library/CoreServices/coreservicesd

root      243   0.0  0.0     1288    116  ??  Ss     0:00.00 inetd

[localhost:~] vanilla%



Figure 2.30 The top command displays a frequently updated list of processes, sorted by how much processing
power each one is using.

[localhost:~] vanilla% top

Processes:  52 total, 2 running, 50 sleeping... 151 threads            17:44:12

Load Avg:  0.36, 0.51, 0.59     CPU usage:  9.1% user, 90.9% sys, 0.0% idle

SharedLibs: num =  119, resident = 26.0M code, 1.80M data, 6.98M LinkEdit

MemRegions: num = 4441, resident =  203M + 7.88M private,  106M shared

PhysMem:  61.6M wired, 89.8M active,  367M inactive,  518M used,  122M free

VM: 2.49G + 50.8M   17504(17504) pageins, 156(156) pageouts

PID COMMAND      %CPU   TIME   #TH #PRTS #MREGS RPRVT  RSHRD  RSIZE  VSIZE

1539 top          0.0%  0:00.24   1    14    15   288K   328K   524K  1.45M

1436 Eudora 5.1   0.0%  1:25.76   7   113   220  8.14M  14.1M  10.9M   102M

1365 TextEdit     0.0%  0:01.13   1    66    81  2.20M  7.46M  3.97M  64.8M

1363 Preview      0.0%  0:00.90   1    62    85  2.38M  7.50M  4.09M  64.9M

1357 hdid         0.0%  0:00.45   1    11    37   808K   340K   676K  2.05M

1142 Mozilla      0.0%  5:35:11   7   102   879  59.0M  33.7M  78.2M   156M

1106 Acrobat Re   0.0%  7:43.54   1    54   183  6.68M  24.6M  18.6M  88.8M

1082 tcsh         0.0%  0:00.75   1    24    15   480K   656K   960K  5.72M

1081 Terminal     0.0%  2:07.07   6   120   138  4.20M  11.8M  9.93M  74.4M

1080 TruBlueEnv   0.0%  8:38:24  18   187   489  90.8M  28.6M   117M  1.06G

1078 iTunesHelp   0.0%  0:00.23   1    45    39   528K  2.90M  1.00M  38.1M

1077 SystemUISe   0.0%  0:28.49   2   107   104  1.46M  6.96M  2.60M  61.0M

1076 Dock         0.0%  0:22.69   3   108   105  2.07M  8.41M  4.60M  63.1M

1075 Finder       0.0%  2:05.74   3   112   263  13.6M  14.1M  18.9M  83.1M

1071 pbs          0.0%  0:03.85   1    29    29  1.98M   812K  2.86M  19.4M

1066 loginwindo   0.0%  0:02.51   7   133   122  2.71M  6.93M  4.50M  51.5M

1065 Window Man   0.0% 14:52.00   3   182   219  2.13M  23.1M  25.1M  53.5M

948 httpd        0.0%  0:00.22   1     9    66   140K  1.23M   604K  2.38M

947 httpd        0.0%  0:00.17   1     9    66   140K  1.23M   604K  2.38M

[localhost:~] vanilla%

44

Chapter 2

A
bo

u
t 

Co
m

m
an

ds
, P

ro
ce

ss
es

, a
n

d 
Jo

bs

To see a constantly updated list of the

top processes:

1. top

The top command displays a frequently

updated list of processes, sorted by how

much processing power each one is

using—that is, which one is at the top of

the list of resource usage (Figure 2.30).

(The reason they’re at 0% is that most

processes, at any given time, aren’t using

that much processor time.) 

Top runs until you stop it by typing:

2. q

This stops the top command and returns

you to a shell prompt.

✔ Tip

■ If you want to save the output of top to a

file (such as using the > redirect operator),

then use the -l switch and specify how

many samples you want. For example, to

get three samples use: 

top -l3 > toplog.



Figure 2.31 When you use unprotected spaces in a command-line argument, you get an error message about the
misplaced parentheses. 

[localhost:~] vanilla% ls /Applications (Mac OS 9)

Badly placed ()’s.

[localhost:~] vanilla%

45

Using the Command Line

A
bo

u
t S

paces in
 th

e Co
m

m
an

d Lin
e

About Spaces in the
Command Line
As we have seen, the shell uses spaces to sep-

arate the parts of the command line. Having

two or more spaces separate a command

from its options or its arguments doesn’t

change anything. When your shell acts on

your command line, it breaks it into pieces by

looking at where the spaces are. The follow-

ing command lines both do the same thing:

ls -l

ls      -l

But this one is very different:

ls -  l

In the first two cases the shell sees two items:

ls and -l In the third case the shell sees

three items: ls, -, and l.

But there are times when you have to include a

space inside an argument—such as in a file-

name that itself contains spaces. Consider what

would happen if you tried the command line

ls /Applications (Mac OS 9)

If you don’t do something special to handle

spaces in command-line arguments, you will

have problems. The shell treats the spaces as

separators, and you will get unexpected and

probably undesired results. (Figure 2.31) 

Here are two ways to handle spaces safely in

command-line arguments.

The Danger of a 

Space Misplaced

A bug in the installation software for an

early version of iTunes could cause the

erasure of an entire hard drive if the first

character in the drive’s name was a space.

The installation script did not allow for

that possibility and neglected to use

quotes where it should have. Even profes-

sional programmers occasionally have

trouble dealing with spaces in filenames

on Unix systems.



To protect spaces using quotes:

1. ls “/Applications (Mac OS 9)”

When you enclose the argument in

quotes, the shell treats everything within

the quotes as a single entity.

2. You may also use single quotes:

ls ‘/Applications (Mac OS 9)’

✔ Tip

■ Using single quotes around a string of

characters eliminates the effect of any

special character, including the $ we saw

earlier for environment variables.

Compare 

echo ‘hello $USER’

with

echo “hello $USER”

The first one echoes the exact characters,

while the second identifies the user. 

To protect spaces using the backslash:

◆ ls /Applications\ (Mac\ OS\ 9)

The backslash character (\) is often used

in Unix to escape a character. This means

“make the next character not special.” In

this case it removes the special meaning

of “separator” from the space character.

This is called escaping a character. 

✔ Tip

■ Many Unix shells (including the default

shell on Mac OS X) provide a feature

called filename completion. When typing a

part of a command line that is an already-

existing file, you can type just part of it

and then press t; the shell tries to fill in

the rest for you. 

46

Chapter 2

A
bo

u
t 

S
pa

ce
s 

in
 t

h
e 

Co
m

m
an

d 
Li

n
e



To use a glob-pattern to match only

one single character:

◆ ls “File?” 

The ? character matches any single char-

acter. So the example above would match

files with names such as FileA, File3,

Files, and so on. It would not match

File23 because the pattern only matches

one character.

✔ Tip

■ You can combine the ? and * glob charac-

ters together. For example,

ls ??.*

This would list files whose names begin

with exactly two characters, followed by a

period, followed by anything. (The period

is matched literally.)

47

Using the Command Line

W
ildcards

Wildcards
Arguments to commands are frequently file-

names. These might be the names of files the

command should read, copy, or move. If you

want to act on a number of files, you don’t

want to have to type every filename, espe-

cially when all the filenames have some pat-

tern in common.

That’s where wildcards come in. Wildcards

(often called glob-patterns) are special char-

acters you can type in a command line to

make a command apply to a group of files

whose names match some pattern—for

example, all files ending in .jpg.

When the shell reads a command line, it

expands any glob-patterns by replacing them

with all the filenames that match. The shell

then executes the command line, using the

new list of arguments with the command.

To use a glob-pattern to match all

filenames starting with Hello:

◆ ls Hello*

The asterisk (*) is the glob character that

matches any number (zero or more) of

characters.

The shell finds all the filenames that

begin with Hello and substitutes that list

for the Hello* on the command line.

So if the directory contains files with the

names Hello, HelloTest, and

HelloGoodbye, then the shell changes the

command line with the wildcard into

ls -l Hello HelloGoodbye HelloTest 

✔ Tip

■ You can use more than one glob-pattern

in a command line, such as

rm *.jpg *.gif

This removes all the .jpg and .gif files

from the current directory.



More specialized glob-patterns

Sometimes you want to use a list of files that

matches a more specific pattern. For this you

might use a more complex kind of pattern.  

To match a range of characters:

1. ls  /var/log/system.log.[0-3].gz

would result in output similar to that

shown in Figure 2.32.

The [ ] characters are used to create a

glob-pattern called a character class. The

resulting pattern matches any single char-

acter in the class. A range of characters

can be indicated by using the hyphen, so

that [0-3] is the same as [0123].

2. Ranges may be alphabetical as well as

numeric:

ls Alpha-[A-D]

3. Unix files names are case-sensitive. You

can match either by including both in the

character class:

ls Alpha-[A-Da-d]

✔ Tip

■ You can create a character class that is

quite arbitrary—for example, the glob-

pattern

Photo-[AD]

matches only Photo-A and Photo-D.

48

Chapter 2

W
il

dc
ar

ds

To negate a character class:

◆ Use the ^ character as the first character

in the character class.

When you do this, the glob-pattern 

*[^3-8] matches anything that does 

not end in 3, 4, 5, 6, 7, or 8 (the * matches

anything, the [^3-8] means “do not

match 3-8”).

Patterns and rules similar to those described

here are used in many different Unix tools,

especially in a set of tools called regular

expressions. See Chapter 4, “Useful Unix

Utilities,” for more on regular expressions.

Figure 2.32 This shows the output when you use a glob-pattern — in this case [0-3] — for a range of characters. 

[localhost:~] vanilla% ls  /var/log/system.log.[0-3].gz

/var/log/system.log.0.gz  /var/log/system.log.2.gz

/var/log/system.log.1.gz  /var/log/system.log.3.gz

[localhost:~] vanilla%



49

Using the Command Line

A
bo

u
t Stan

dard In
pu

t an
d O

u
tpu

t

Figure 2.33 Here’s how the normal connections of stdin, stdout, and
stderr work.

stdin stdout

s
t
d
e
r
r

keyboard

command

Screen

About Standard Input 
and Output
Normally, the output from command lines

shows up on your screen. You type in a com-

mand and press r, and the resulting out-

put shows up on your screen. This is actually a

special case of the more general-purpose way

that Unix handles both input and output.

All Unix commands come with two

input/output devices, called stdin (for stan-

dard input) and stdout (for standard output).

You can’t see the stdin and stdout devices

the same way you see a printer, but they are

always there. You might like to think of stdin

and stdout as valves or hose-

connectors stuck on the outside of every

command. Think of the stdout connector as

being fed to your screen, and your keyboard

feeding the stdin connector. 

You have seen redirection of stdout with the

> and >> operators earlier in this chapter. In

this section, you will learn more about redi-

recting stdout, and also how to redirect

stdin—that is, to have a command get input

from someplace other than the keyboard—

and how to connect the stdout of one com-

mand to the stdin of another, creating what

is called a pipeline. This ability to connect

several commands together is one of the

most important features of Unix’s flexibility.

Besides stdin and stdout, there is one more

virtual connection on each command,

stderr (for standard error), which is output

connection for warning and error messages.

If a command issues an error message, it

comes out of the stderr connector, which is

normally connected to your screen (same as

stdout). If you redirect stdout to a file (with

>), stderr still goes to your screen. You can

redirect stderr as well, though. 

stdin, stdout, and stderr are often capital-

ized in Unix manuals and literature. Both

upper- and lowercase usage is correct.

Figure 2.33 illustrates the concept of the

stdin, stdout, and stderr connectors.



Redirecting stdout 

The most common form of redirection is to

redirect the output of a command into a file.

You will redirect stdout to a file when you

want to save the output for later use such as

editing or viewing.

To save output in a file:

◆ Add > filename to the command line.

For example,

ls /Users > users

redirects the output into the file named

users. If the file does not already exist, it

is created. If the file does exist, the con-

tents are overwritten.

✔ Tip

■ Sometimes you want to simply throw

away the output of a command without

ever seeing it. To do this, redirect the out-

put into the special file called /dev/null.

For example,

noisy_command > /dev/null

■ Anything written to /dev/null is simply

discarded. It’s a good place to send insults

and complaints. 

Sometimes you will want to add the redi-

rected output to a file instead of overwriting

the contents:

To append output to a file:

◆ Use >> filename at the end of the 

command—for example,

ls /Users >> users

redirects the output to the file called

users, or creates the file if it did not

already exist.

50

Chapter 2

A
bo

u
t 

St
an

da
rd

 In
pu

t 
an

d 
O

u
tp

u
t

Redirecting stderr

Stderr can be redirected as well. One reason

to do this is to save errors into a log file.

Another reason is to not have warning and

error messages clutter up your screen. 

To redirect stderr to a file: 

◆ Use >& filename

In the tcsh shell you cannot redirect 

stdout and stderr separately, but you

can make stderr go to the same file as

stdout. For example, 

ls /bin >& outfile

puts the stdout and stderr output into

the file named outfile. You can use >>&

to append instead of overwriting an

existing file. 

In the bash shell you can redirect stdout and

stderr separately.

Redirecting stdin

Sometimes you’ll want a command to get 

its input from a file you have prepared. For

example, you might have prepared the text 

of an email message and want to feed it into

the mail command, or you have a list of file

names you want to feed into a program.

Most Unix commands allow you to redirect

standard input and have it come from a file

instead the keyboard.

To take standard input from a file:

◆ Add < filename to the end of the 

command.

For example, if you have a file that con-

tains a list of 30 file names, you might type

ls -l < list_of_files

instead of 

ls -l file1 file2 file3

... and so on.



51

Using the Command Line

Creatin
g

 P
ipelin

es o
f Co

m
m

an
ds

To pipe the output of one command

into another:

1. Type the first command that produces

output, but don’t press r until the

last step below.

This can be any command (along with

options and arguments) that produces

output on stdout. For example,

ls -l /bin

lists the contents of /bin, where the exe-

cutable files for many commands are

stored (Figure 2.34). But let’s say we

want to know the modification date and

the filename. Noticing that this informa-

tion starts 38 characters into each line,

we might pipe the output of the ls com-

mand into the cut command, telling cut

to show us only character 38 and up from

each line.

Creating Pipelines of
Commands
Another way to manipulate stdin and std-

out is to have one command take its input

directly from the output of another com-

mand. To do this, Unix uses the |, or pipe,

character to connect commands together to

form pipelines, with the stdout of each com-

mand being piped into the stdin of the next

one. The enables you to create an almost infi-

nite variety of command lines processing

input and output to what are nothing more

than miniature custom applications.

Figure 2.34 Running ls -l /bin lists the contents of /bin, where the executable files for many commands are stored.

[localhost:~] vanilla% ls -l /bin

total 4208

-r-xr-xr-x  1 root  wheel      13728 Dec 20 22:24 [

lrwxr-xr-x  1 root  wheel         19 Dec 20 22:25 bash -> /usr/local/bin/bash

-r-xr-xr-x  1 root  wheel      13980 Dec 20 22:25 cat

-r-xr-xr-x  1 root  wheel      13852 Dec 20 22:22 chmod

-r-xr-xr-x  1 root  wheel      19012 Dec 20 22:25 cp

-r-xr-xr-x  1 root  wheel     318716 Dec 20 22:25 csh

-r-xr-xr-x  1 root  wheel      14716 Dec 20 22:22 date

-r-xr-xr-x  1 root  wheel      22580 Dec 20 22:23 dd

-r-xr-sr-x  1 root  operator   18660 Dec 20 22:23 df

-r-xr-xr-x  1 root  wheel       9856 Dec 20 22:24 domainname

-r-xr-xr-x  1 root  wheel       9216 Dec 20 22:24 echo

-r-xr-xr-x  1 root  wheel      56304 Dec 20 22:23 ed

(...output truncated for brevity...)



52

Chapter 2

Cr
ea

ti
n

g
 P

ip
el

in
es

 o
f 

Co
m

m
an

ds

2. Add the | character at the end of the

command. 

The | character catches the output from

what is on its left and passes it to the

stdin of what is on its right.

3. Add the command that will receive its

input from the pipe. Continuing our

example, the command line would now

look like this:

ls -l /bin | cut -c38- 

and the result would look like Figure 2.35.

Now you can press r. Or if you

wanted to redirect the output of the

pipeline to a file, the final command line

would be:

ls -l /bin | cut -c38- > outfile

Before this next task will work on your Mac

OS X system, you need to make a small fix;

see Chapter 14, “Installing and Configuring

Servers,” the section “Fixing the Permissions

on the Root Directory so Sendmail Will

Work.” Once you have made the fix, and

assuming your computer is connected to the

Internet, you can pipe the output of any com-

mand into an email message for another user

on the Internet. 

To pipe the output of a command into

email:

◆ command | mail -s “subject” address

command can be any command line that

produces output on stdout. Subject is

the subject of the email message, and

address is a valid email address.

Figure 2.35 Running ls -l /bin | cut -c38- gives
this partial output.

[localhost:~] vanilla% ls -l /bin | cut -c38-

Dec 20 22:24 [

Dec 20 22:25 bash -> /usr/local/bin/bash

Dec 20 22:25 cat

Dec 20 22:22 chmod

Dec 20 22:25 cp

Dec 20 22:25 csh

Dec 20 22:22 date

Dec 20 22:23 dd

Dec 20 22:23 df

Dec 20 22:24 domainname

Dec 20 22:24 echo

Dec 20 22:23 ed

(...output truncated for brevity...)



Figure 2.36 Running a command in the background, here you’ve gotten three samples from the top command and
sent them in email.

[localhost:~] vanilla% top -l3 | mail -s “3 samples from top” matisse@matisse.net &

[1]  519  520

[localhost:~] vanilla%

Figure 2.37 The shell notifies you when the job is completed.

[localhost:~] vanilla%

[1]  - Done           top -l3 | mail -s 3 samples from top matisse@matisse.net

[localhost:~] vanilla%

Running a Command in
the Background
Some commands take a while to run. For

example, a command that searches through

a large number of files or a command that

must read a large amount of input may take

more time than you’re willing to twiddle your

thumbs.

It is a simple matter to have a command run

in the background and get a shell prompt

right away so you can keep on working. The

command keeps running—you can stop it or

bring it to the foreground if you like—but

you can let the operating system worry about

the command while you do other things.

To run a command line in the

background:

◆ Add the & character at the end of the

command line.

At the end of any command line, you can

add the & character so that the entire

command line runs in the background.

The shell shows you the background job

number and the process ID numbers for

each command on the command line,

and gives you a shell prompt right away.

Figure 2.36 shows an example of getting

three samples from the top command

and sending them in email.

Once the job is finished running, the shell

displays a notice the next time it gives

you a new shell prompt. That is, the shell

does not spontaneously notify you, but it

waits and displays the notice along with

the next shell prompt (Figure 2.37).

✔ Tip

■ If a background job needs input from you,

it simply sits and waits patiently—possi-

bly forever. Before putting a job in the

background, you should have a good idea

of how it behaves normally.

53

Using the Command Line

R
u

n
n

in
g

 a Co
m

m
an

d in
 th

e B
ackg

ro
u

n
d

520 is process ID of the mail command 

519 is the process ID of the top command

The [1] is the Job ID number



To stop a background job:

1. jobs

This shows you the list of all jobs run-

ning. 

2. kill %n

where n represents any number, such as 

kill %2

This is the same kill command we saw

earlier in this chapter, only this time

instead of the process ID we are using the

job ID. The same options apply here. Kill

by itself sends a hangup signal to each

process in the job, requesting that it quit;

kill -9 sends kill signals that can’t be

ignored, stopping the job in its tracks.

Sometimes you might not realize that a com-

mand is going to take a while to finish until

after you start it. You might have pressed

r and find yourself waiting for the job

to finish. Or maybe you want to temporarily

stop a job, get a shell prompt, do something

else, and then return to the job that was

stopped. You can suspend the job and get a

shell prompt back right away.

A suspended job will be in the background,

but it won’t keep running; that is, its memory

remains active, but it consumes no processor

time. You can bring it back to the fore-

ground, or tell it to keep running in the back-

ground, just as if you had started it initially

with an & at the end of the command line.

You can have several jobs running in the

background, and you can bring any of them

back to the foreground, or stop any of them

by using the kill command, discussed earlier

in this chapter.

To see a list of jobs running in the

background:

◆ jobs

The jobs command displays a list of

background jobs started from the current

shell (Figure 2.38). If you have multiple

Terminal windows open, each has its own

list of background jobs.

Even if a job consists of multiple com-

mands (processes), it has a single job

number.

To bring a job back to the foreground:

1. jobs

Run the jobs command to get a list of job

numbers. Pick the one you want to bring

back to the foreground.

2. fg %n

Use the fg command (meaning fore-

ground) to bring the job from the back-

ground. You identify the job with % and

its job number: %1 for job 1, %2 for job 2,

and so on.

The job is now running in the foreground.

✔ Tip

■ Once a job is in the foreground, you can

stop it with CC, or with the

method shown below.

54

Chapter 2

R
u

n
n

in
g

 a
 C

o
m

m
an

d 
in

 t
h

e 
B

ac
kg

ro
u

n
d

Figure 2.38 Running the jobs command gives you a list of jobs running in the background.

[localhost:~] vanilla% jobs

[1]  + Suspended                  vm_stat 5

[2]  + Running                    top -l3 | mail -s 3 samples from top matisse

[localhost:~] vanilla%



55

Using the Command Line

R
u

n
n

in
g

 a Co
m

m
an

d in
 th

e B
ackg

ro
u

n
d

Figure 2.39 Using CZ suspends the top command.

SharedLibs: num =   93, resident = 22.5M code, 1.57M data, 5.52M LinkEdit

MemRegions: num = 3234, resident =  142M + 7.07M private, 84.3M shared

PhysMem:  60.1M wired, 71.8M active,  245M inactive,  377M used,  263M free

VM: 2.34G + 45.8M   9564(0) pageins, 0(0) pageouts   

PID COMMAND      %CPU   TIME   #TH #PRTS #MREGS RPRVT  RSHRD  RSIZE  VSIZE

439 Mozilla      1.7% 36:35.72   6    87   437  26.6M  25.4M  43.2M   109M

396 AOL Instan   1.7% 31:01.89  10   121   170  10.7M  11.0M  16.2M  79.3M

379 Eudora 5.1   0.0%  7:26.90   7   112   162  6.49M  12.5M  11.2M   100M

356 httpd        0.0%  0:00.13   1     9    65   140K  1.25M   612K  2.38M

329 tcsh         0.0%  0:00.61   1    24    17   508K   676K   996K  5.99M

328 ssh-agent    0.0%  0:01.23   1     9    14    80K   352K   172K  1.29M

327 Terminal     1.7%  0:51.57   5   114   103  2.89M  7.12M  6.08M  68.5M

325 sh           0.0%  0:00.01   1    16    13   164K   640K   556K  1.69M

^Z

[1]  +   736 Suspended                     top

[localhost:~] vanilla%

To suspend a job:

◆ CZ

Figure 2.39 shows what happens when

you use CZ to suspend the top

command while it is running. The shell

shows you the job ID and process ID of

the suspended job, and returns you to a

shell prompt.

✔ Tip

■ You can bring the job back to the fore-

ground as described above using the fg

command. If the job you want to bring

back to the foreground is the one you just

suspended, you can use fg by itself with

no arguments.

Compare with Aqua

The Unix concept of putting a command

in the background is very much like the

traditional Mac or Aqua situation where

you have an application running in one

window, and you open a window for a dif-

ferent application. The first application

continues to run, and you can get on with

other things.



If you have suspended a job and decide you

want the job to keep running, but in the

background, you can do that, too.

To have a suspended job continue

running in the background:

◆ bg %n

For example, 

bg %2

tells job number 2 to start running again,

but to do so in the background. Figure

2.40 shows an example of starting a job,

suspending it, running another com-

mand, and then starting up the sus-

pended job again in the background.

✔ Tip

■ If the suspended job is the one you most

recently suspended, you can use bg with

no arguments.

56

Chapter 2

R
u

n
n

in
g

 a
 C

o
m

m
an

d 
in

 t
h

e 
B

ac
kg

ro
u

n
d

Figure 2.40 You can suspend a job, and then restart it in the background using bg %n.

[localhost:~] vanilla% find /Developer/Documentation -name “*.htm” > found_files 

^Z

[1]  +   743 Suspended   find /Developer/Documentation -name *.htm > found_files

[localhost:~] vanilla% uptime

9:18AM  up 1 day, 15 mins, 2 users, load averages: 0.08, 0.15, 0.14

[localhost:~] vanilla% bg %1

[1]    find /Developer/Documentation -name *.htm > found_files &



57

Using the Command Line

O
pen

in
g

 Files fro
m

 th
e Co

m
m

an
d Lin

e

Importance of Editing Text in Unix

Editing text from the command line is a

crucial part of using Unix.

Unix system-configuration files, system-

startup files, source code for software, and

much documentation are all contained in

text files, which you will have occasion to

edit when using the command line.

While you can certainly use your favorite

Aqua text editor or word processor to edit

text in Mac OS X, you will need to be able to

edit files directly from the command line if

you do any serious command-line work.

Also, if you want to be able to use other

Unix systems besides Mac OS X, you will

need to learn how to edit files using one of

the command-line tools.

Chapter 6, “Editing and Printing Files,”

teaches you the basics of using the most

common command-line text editor, the vi

editor. In this chapter, you will use the sim-

pler pico editor, which is adequate for the

example of creating a shell script but is not

appropriate for more complex Unix work

such as editing system-startup files.

✔ Tip

■ You can specify which application to 

use with the -a switch (or option)—

for example,

open -a “BBEdit 6.5” found_files

would open the file called found_files

using the BBEdit 6.5 application.

To run an AppleScript from the

command line:

◆ osascript scriptname

The osascript command executes the

script named by its argument.

✔ Tip

■ If you are an experienced AppleScript

programmer, read the Unix manual for

osascript by typing:

man osascript

You will also be interested in learning about

the osacompile and osalang commands.

Opening Files from the
Command Line
One of the great things about using the Unix

command line in Mac OS X is that you are

also using a Macintosh. So how do you access

graphical Mac applications or AppleScripts

from the command line? Apple provides a set

of command-line tools to do exactly that.

To “double-click” a file from the

command line:

◆ open filename

The open command performs the equiv-

alent of double-clicking each of its argu-

ments. For example,

open *.doc FunReport

is the same as double-clicking all the .doc

files in the current directory, along with

the file FunReport. The default applica-

tion for each file is used just as if you had

double-clicked the icons in the Finder.



Creating a Simple Unix
Shell Script
A shell script is a text file that contains a series

of shell commands. Shell scripts are used for 

a wide range of tasks in Unix; Chapter 9,

“Creating and Using Scripts,” covers complex

shell scripts that contain loops, functions,

and other features associated with computer

programming. But here we’ll talk about sim-

pler shell scripts, which are often just a series

of command lines intended to be executed

one after the other.

When you create a script you’ll be using fre-

quently, you should save it in a place where

your shell normally looks for commands. This

way, you can run the script by simply typing

its name, as you would for any other command.

The list of places where your shell looks for

commands is called your PATH, and we teach

you how to change your PATH in Chapter 7,

“Configuring Your Unix Environment.”

The standard place to store scripts for your

personal use (as opposed to scripts intended

for use by all users) is the bin directory inside

your home directory. Mac OS X (as of version

10.2) ships without this directory’s having

been created for each user and without its

being on the list of places where your shell

looks for commands (your PATH), so before we

have you actually create a script, we show you

how to create this directory and add it to your

PATH. (See Chapter 7 for more on your PATH.)

To create your personal bin directory:

1. cd

This ensures that you are in your home

directory. 

2. mkdir bin

This creates a new directory called bin

(a standard Unix name for directories 

that contains commands, scripts, or 

applications).

58

Chapter 2

Cr
ea

ti
n

g
 a

 S
im

pl
e 

U
n

ix
 S

h
el

l 
S

cr
ip

t

✔ Tip

■ See Chapter 5, “Using Files and

Directories,” for more on the mkdir

command.

To add your bin directory to your PATH:

1. cd

This ensures that you are in your home

directory. (You can skip this step if you

have just done the task above, but it 

doesn’t hurt to do it again.)

2. set path = ( $path ~/bin )

This adds the bin directory inside your

home directory to the list of places your

shell searches for commands. The next

step takes care of doing this for all future

Terminal windows you open.

3. echo ‘set path = ( $path ~/bin )’ >> 

➝  .tcshrc

That command line adds a line of code 

to a configuration file used by your shell.

Every new Terminal window you open

will have the new configuration.

Be careful to type it exactly as shown—

the placement of spaces and the use of

single quotes must be replicated exactly.

Be sure to type both greater-than signs.

The text contained inside the single

quotes is added as a new line to the end

of the file .tcshrc that is inside your

home directory. You may check that this

was successful by displaying that file with

cat .tcshrc

and the last line of the output should be

set path = ( $path ~/bin )



59

Using the Command Line

Creatin
g

 a S
im

ple U
n

ix S
h

ell S
cript

Unix shell scripts can be written for any of

the available shells, but the standard practice

is to write shell scripts for the sh shell. The sh

shell can be expected to behave in the same

way on any Unix system.

Here is an example of creating a simple shell

script that shows you a variety of status

information about your computer. 

To create a shell script to show system

status:

1. cd

This makes sure you are in your home

directory.

2. cd bin

This changes your current directory to

the bin directory.

3. pico status.sh

This starts up the pico editor, telling it to

edit (and create) the file status.sh

(Figure 2.41).

We name the new script with a .sh

extension as a reminder that it is written

using the sh scripting language.

Figure 2.41 This is what you see when you start the pico editor.



4. Type in the script from Figure 2.42. Note

that the highlighted line uses the back-

quote character—this is the ` character,

which is usually in the upper left of your

keyboard (to the left of 1).

5. CX

Typing CX causes the pico editor to

quit. Pico asks you if you want to save the

changes you have made (Figure 2.43).

60

Chapter 2

Cr
ea

ti
n

g
 a

 S
im

pl
e 

U
n

ix
 S

h
el

l 
S

cr
ip

t

Figure 2.42 This is the code listing of a system-status script.

#!/bin/sh

# This is a comment. Comments are good.

# This is my first shell script.

echo “System Status Report”

date

echo -n “System uptime and load:” ;  uptime

echo -n “Operating System: “ ; sysctl -n kern.ostype

echo -n “OS Version: “ ; sysctl -n kern.osrelease

echo -n “OS Revision number: “ ; sysctl -n kern.osrevision

echo -n “Hostname: “ ; sysctl -n kern.hostname

bytes=`sysctl -n hw.physmem`

megabytes=`expr $bytes / 1024 / 1024`

echo “Physical memory installed (megabytes): $megabytes”

Figure 2.43 The pico editor asks if you want to save changes.

[localhost:bin] vanilla% status.sh

System Status Report

Sat Apr  6 11:36:43 PST 2002

System uptime and load:11:36AM  up 1 day,  2:33, 4 users, load averages: 0.26, 0.42, 0.55

Operating System: Darwin

OS Version: 5.3

OS Revision number: 199506

Hostname: localhost.localdomain

Physical memory installed (megabytes): 640

[localhost:bin] vanilla%



9. rehash

The rehash command makes tcsh

rebuild its list of where to find com-

mands. Tcsh now knows where to find

the new command, status.sh. 

You can use the new command as you

would any other—just type its name at a

shell prompt and press r.

10. status.sh

Figure 2.45 shows typical output from

the command. You have just created

your first new command.

Welcome to Unix.

61

Using the Command Line

Creatin
g

 a S
im

ple U
n

ix S
h

ell S
cript

6. y

Type a y to tell pico that yes, you want to

save the changes you have made.

Pico then asks you to confirm the file-

name to save to (Figure 2.44).

7. Press r.

Pico exits, and you are back at a shell

prompt.

8. chmod 755 status.sh

The chmod command (change mode) sets

the file status.sh to be an executable file.

See Chapter 8, “Working with Permissions

and Ownership,” for more on the chmod

command.

Now all you have to do is tell tcsh (your

shell) to rebuild its database of available

commands to include status.sh. 

Figure 2.44 The pico editor asks you to confirm the filename you’re using.

Figure 2.45 Typing status.sh shows you output from the command you have just created.

[localhost:bin] vanilla% status.sh

System Status Report

Sat Apr  6 11:36:43 PST 2002

System uptime and load:11:36AM  up 1 day,  2:33, 4 users, load averages: 0.26, 0.42, 0.55

Operating System: Darwin

OS Version: 5.3

OS Revision number: 199506

Hostname: localhost.localdomain

Physical memory installed (megabytes): 640

[localhost:bin] vanilla%




