
1

What is Unix, 
and Why 
Is It Good?

1
W

h
at is U

n
ix, an

d W
h

y Is It G
o

o
d?

Mac OS X is the most significant advance in desktop computing since the introduc-

tion of the original Mac interface. It provides users with unparalleled stability, flexibil-

ity, and openness—arguably necessary additions to the Macintosh operating system.

Each of these features will help users take their Macs to new creative heights. Mac OS

X provides these features by virtue of  having been built on top of Unix. So if you’re

using Mac OS X, you’re using Unix.

You probably already know that Unix is an industrial-strength operating system. It’s

specifically designed for always-on, network-connected computers that run multiple

applications and are shared by many users. Since its creation in 1969, Unix has evolved

into one of the world’s most popular operating systems. Moreover, Unix is an excellent

environment for creating new software. Apple built Mac OS X on top of a version of

Unix called Darwin. If you’re a Mac user who wants to push the boundaries of what

you can do with your computer, here’s what Unix can do for you.



The Advantages of a 
Unix-based Mac OS
While Unix is best known as a server operat-

ing system—most of the servers on the

Internet run Unix—it’s also been the desktop

operating system for engineers, software

developers, and system administrators. But

Mac OS X is placing a Unix-based system on

millions of desktops. With Unix under the

hood of OS X, Macintosh users will now be

able to take advantage of software develop-

ments beyond the boundaries of Apple

Computer, while still enjoying the elegance

and ease of use the Mac OS is famous for.

Basing Mac OS X on the Darwin operating

system gave it three important features that,

for all its advantages, the Mac OS had not pre-

viously had: stability, flexibility, and openness.

Stability 

Even the most devoted Macintosh user will

admit that system crashes have been an

unfortunate but predictable part of everyday

life. Unix systems, however, are extremely

difficult to crash. Thanks to protected mem-

ory—the memory each application uses that

is unavailable to any other application—with

OS X your Macintosh will continue running

even when one or more applications crash.

You can simply restart the crashed applica-

tion without having to restart your Mac. 

If your system doesn’t have protected memory,

a badly behaving application can disturb the

memory space of another application, or even

of the operating system itself—often with

nasty results. Macintosh operating systems

before OS X didn’t include protected mem-

ory—which explains all those system crashes!

A feature called preemptive multitasking

allows the operating system to limit the

amount of computational resources devoted

to each application by prioritizing between

2

Chapter 1

Th
e 

A
dv

an
ta

g
es

 o
f 

a 
U

n
ix

-b
as

ed
 M

ac
 O

S

What’s in a Name?

Strictly speaking, Unix is a trademarked

term that’s been variously owned by

AT&T, Novell, and now the Open Group

(www.opengroup.org). Only Unix versions

with the correct legal pedigree can use

that name. In reality, though, most people

casually refer to all of the various “flavors”

as Unix.

tasks. Before Mac OS X, the Mac OS employed

cooperative multitasking—in which each

application is supposed to behave and play well

with the other applications on a machine. You

can guess what happens when cooperatively

multitasked applications don’t cooperate.

Flexibility

Unix was designed to allow different pro-

grams to be connected in an almost infinite

variety of ways. Because thousands of utilities

are available for Unix (and because they work

together so well), Unix users can customize

their work environments relatively easily,

building their own tools when the need

arises. Mac OS X itself comes with around

500 utilities, most of which can be easily com-

bined with other programs (see Chapter 4,

“Useful Unix Utilities,” for a roundup of the

ones you’re most likely to use). Because of

this (and its portability), Unix is the ideal

environment for developing new software.

Openness 

Darwin, like other open-source versions of

Unix, such as Linux, is open—that is, the

inner workings are open to examination and

change. You can download, study, and alter

its programming source code at will. (In fact,

versions of Darwin other than Apple’s already

exist.) Say you want to create a server that

enables you to synchronize an iPod with 



any computer over the Internet, or one that

sends faxes on demand from a catalog of

files: Whatever software you create is likely

to use an existing piece of Unix software as

its starting point. 

By allowing people to examine and change

their operating systems, open-source soft-

ware is central to the ongoing evolution and

spread of Unix, resulting in a software-devel-

opment environment that will continue to

increase in stability, flexibility, and power. 

Unix’s ability to connect different programs

together provides almost infinite flexibility.

Combine this with Unix’s built-in support for

TCP/IP (the networking protocol that defines

the Internet) and other networking tools, and

you have an operating system—Mac OS X—

that’s ready to take you into a future in which

you can build your applications, and every

computer has the ability to be a server. 

Whatever capability you want to add to an

application, you can probably do it in Darwin.

As a Mac enthusiast, you may have had lim-

ited exposure to any kind of programming,

but you’ll be able to expand your horizons by

accessing the Unix underlying Mac OS X.

Even if you’re brand-new to programming,

delving into Unix is the best way to start.

3

What is Unix, and Why Is It Good?

Th
e A

dvan
tag

es o
f a U

n
ix-based M

ac O
S

Becoming a sophisticated user 

Thus, you should read this book because you

want a deeper understanding of your com-

puter, and to get your fingers and hands and

mind inside of it. Using Unix is about moving

from being a consumer of software and sys-

tems to being a creator of software and sys-

tems. This means pushing the envelope of

how you interact with the operating system,

delving into areas where most users don’t go,

in order to develop capabilities that most

users don’t have. Mac OS X makes this possi-

ble now because Unix is an operating system

for developing and building, for getting into

the nitty-gritty.

Since much Unix software is created by vol-

unteers, you’re benefiting from the hard work

of thousands of users. But using Unix means

you will always tweak, modify, and configure

to get the software to do what you want. By

bringing an industrial-strength server to

your desktop, Apple has taken desktop com-

puting to another level—in much the same

way that Macintosh-plus-PostScript laser

printers brought high-quality print publish-

ing and graphics tools to the desktop. None

of this is automatic, though, and using Unix

places a greater burden on you. If you’re com-

ing to Unix expecting the shrink-wrapped

experience of the Mac OS or Windows,

you’re bound to be disappointed. 

You will work with Unix primarily from the

command line in the Terminal application

(more about that in the next chapter). You

will put together lots of odd-sounding com-

mands, creating tiny and not-so-tiny scripts

and programs to give the machine capabili-

ties it never had before. You will not only be

customizing your machine and creating soft-

ware, you will be customizing your world,

and indirectly the world the rest of us live in.

From Multics to Unix

Unix wasn’t actually named until about a

year into its development—at which point

the wordplay on the preceding Multics

project was intentional (uni, meaning

“one,” as opposed to multi, meaning

“many”). The tradition of puns and word

games in Unix software continues to this

day, as you’ll see in later chapters when we

introduce programs such as less, which is

an improvement on an earlier program

called more. More became less, you see.



Most people won’t really notice that Mac OS

X is Unix-based. In fact, most people will use

their Mac OS X Macintoshes just as they

always have—writing in their word proces-

sors, creating images in graphics software,

and editing sound and video.

Furthermore, some of the Unix tools in Mac

OS X were available in some form for Mac OS

9, but the Unix versions are included with

Mac OS X (for example, a Web server and an

email server). With Mac OS X, you are more

likely to work with these applications, for a

couple of reasons. Mac OS X is so stable that

you won’t be afraid of messing up your com-

puter. More important, if you use a “pure”

Unix tool, like the Apache Web server, then

the skills you learn, and the system you build,

will be transferable to almost any other Unix

environment with little effort.

Unix will always be more hands-on than the

graphical user interfaces you’re accustomed

to. However, if you’re ready to experience new

heights of computing creativity, you’ll find

that you have a more personalized and robust

system on your hands by the time you finish

this book. 

4

Chapter 1

Th
e 

A
dv

an
ta

g
es

 o
f 

a 
U

n
ix

-b
as

ed
 M

ac
 O

S

Other Versions of Unix

Over the years, many versions of Unix

have been developed—some by large cor-

porations (for example, Sun Microsystems’

Solaris and Hewlett-Packard’s HP/UX),

and some by small companies and individ-

uals working for their own pleasure. The

most famous of the latter is the open-

source GNU/Linux operating system,

which combines the work of hundreds of

programmers from around the world and

has been adopted by thousands of compa-

nies. (For example, IBM announced in

January 2002 a mainframe computer

designed specifically for Linux.)

A good list of dozens of versions of Unix is

available at www.ugu.com/sui/ugu/show?

ugu.flavors 



But First, a Little History

What we wanted to preserve was 

not just a good environment in which 

to do programming, but a system 

around which a fellowship could form.

We knew from experience that the

essence of communal computing, 

as supplied by remote-access, 

time-shared machines, is not just to 

type programs into a terminal 

instead of a keypunch, but to 

encourage close communication.

—Dennis M. Ritchie, coinventor of Unix 

From “The Evolution of the Unix Time-Sharing System,” 

AT&T Bell Laboratories 

Technical Journal 63, No. 6, Part 2, October 1984 

(http://cm.bell-labs.com/cm/cs/who/dmr/hist.html)

How did Unix end up as the underpinning of

the Mac OS? In 1997, after a series of unsuc-

cessful attempts to update the Macintosh

operating system—remember Pink and

Copland?—Apple bought NeXT, the computer

company that Apple cofounder Steve Jobs had

started 12 years earlier after he was forced out

of Apple. NeXT had developed a powerful oper-

ating system with an elegant user interface but

had failed to become commercially successful.

(Of course, commercial success is not the only

way to gauge the quality of a product. None

other than Tim Berners-Lee, inventor of the

World Wide Web, used a NeXT machine for

his development work on hypertext.) 

When Apple bought NeXT, it got the code

for NeXT’s operating system, development

tools, and user interface. But more impor-

tant, it got Steve Jobs and a culture of Unix-

based development. The NeXT operating

system, while largely written from scratch,

was a version of Unix, and the NeXT engineers

5

What is Unix, and Why Is It Good?

B
u

t First, a Little H
isto

ry

were used to a Unix culture—that is, employ-

ing powerful, flexible tools and systems in an

environment of creative engineering. Given

the effect on Apple’s operating-system devel-

opment, some people say that, culturally,

NeXT bought Apple. 

Since Mac OS X is based on a new version 

of Unix called Darwin, by the time OS X was

released, the percentage of NeXT-derived code

was small. Still, that cultural influence has

played a huge part in moving Apple toward

the values of openness, flexibility, and stability.

Where did those values come from? They were

part of Unix from its beginnings. Unix was

born in 1969 from the efforts of a small group

of scientists working at AT&T’s Bell Labs to

create an operating system that would allow

the group to continue the kind of collaborative

programming they had been doing on an ear-

lier project called Multics. Thus, from the very

Unix Pioneer: Bill Joy

Perhaps most recognizable to the general

population as the chief scientist and

cofounder of Sun Microsystems, Bill Joy is

known in the Unix community as the pri-

mary designer of the Berkeley Software

Distribution (BSD) version of Unix.

Among Joy’s many contributions are the

NFS (Network File System) protocol, the

open-source version of TCP/IP, and the 

vi text editor. 

After its introduction in 1983, BSD Unix

became the first widely distributed open-

source version of Unix and is the basis for

numerous later versions of Unix, including

Darwin, the core of Mac OS X.

Bill Joy’s official Sun Microsystems biogra-

phy is at www.sun.com/aboutsun/media/

ceo/mgt_joy.html

continues on next page



Figure 1.1 Apple built the latest version of its operating
system, Mac OS X, on top of a version of Unix called
Darwin. Between the Aqua interface and the underlying
operating system are two layers of Apple-specific
programming layers.

6

Chapter 1

B
u

t 
Fi

rs
t,

 a
 L

it
tl

e 
H

is
to

ry

Unix Pioneer: Linus Torvalds

Linus Torvalds is widely known as the

inventor of Linux, a completely open-

source Unix-like operating system. Torvalds

wrote the core of Linux, called the kernel,

and released the first version in 1991.

Besides the Linux kernel, Torvalds’s most

significant contribution to Unix has been

his ability to gently and productively facil-

itate and coordinate the efforts of literally

hundreds of programmers whose work

comprises the current version of the

Linux kernel.

Torvalds made a key decision when he

released the code for the Linux kernel under

a software license called the GNU General

Purpose License (GNU GPL), which requires

anyone making changes to the source code

to make those changes freely available to the

world. Most installed versions of Linux

come with hundreds of other pieces of soft-

ware also licensed under the GNU GPL, and

so the name GNU/Linux is usually more

accurate when speaking of Linux.

The unoffical Linus FAQ is at

www.tuxedo.org/~esr/faqs/linus/.

Linus’s own home page is at

www.cs.helsinki.fi/u/torvalds/.

beginning, Unix was conceived as both a

multiuser and a multitasking system—that is,

one that many people and many programs

could use simultaneously and harmoniously.

In the late 1970s, the University of California

at Berkeley used Unix extensively in its com-

puter science department, several of whose

members contributed features to the operat-

ing system. A key contribution: building in

support for TCP/IP (the networking protocol

suite that defines the Internet), added in the

early 1980s. Virtually all current versions of

Unix use the Berkeley networking code or its

derivatives. Eventually, the version of Unix

that came out of the university was dubbed

the Berkeley Software Distribution (BSD)—

from which the Darwin core of Mac OS X is 

a direct descendant.

Thus, when we refer to Mac OS X’s Unix fea-

tures, we’re almost always talking about

Darwin. And although you can run Darwin

by itself, it won’t look like Mac OS X without

the proprietary components Apple provides. 

Think of Mac OS X as having several layers:

The bottom, or foundation, layer is Darwin

(Figure 1.1). On top of Darwin are a number

of proprietary software components Apple

has added. Above it all is the layer users

see—the graphical interface called Aqua. You

can use Mac OS X for traditional Macintosh

tasks without ever being aware of the layers

underneath Aqua, including Darwin.



7

What is Unix, and Why Is It Good?

B
u

t First, a Little H
isto

ry

Unix History Timeline

Some key dates in the development of dif-

ferent Unix versions:

◆ 1970: Ken Thompson suggests the name

Unix for the fledging operating system

born in 1969 at AT&T Bell Labs.

◆ 1973: The kernel (core) of Unix is rewrit-

ten in the C language, making it the

world’s first operating system that’s

“portable”—that is, able to run on multi-

ple kinds of hardware.

◆ 1977: First BSD (Berkeley Software Dis-

tribution) version is released. Licensees

must also get a license from AT&T.

◆ 1983: Version 4.2 BSD is released. By the

end of 1994, more than 1,000 licenses are

issued. AT&T releases its commercial ver-

sion, System V.

◆ 1983: AT&T releases System V release 3.

IBM, Hewlett-Packard, and others base

their own Unix-like systems on this 

version.

◆ 1991: Linus Torvalds releases version 0.02

of Linux, an open-source, Unix-like oper-

ating system.

◆ 1992: Bill Jolitz releases 386/BSD, a full

version of Unix with no AT&T code.

◆ 1992: Sun Microsystems releases Solaris, a

version of Unix based on System V release

4, incorporating many BSD features.

◆ 1994: BSD4.4-Lite is released by the

University of California at Berkeley. It is

entirely free of legal encumbrances from

the old AT&T code. Version 1.0 of Linux

is also released this year; Linux incorpo-

rates features from both AT&T’s System

V and BSD versions of Unix.

◆ 1999: Apple Computer releases Darwin—

a version of BSD Unix and the core of the

Mac OS X.

Unix Pioneer: Dennis M. Ritchie

Dennis M. Ritchie has been a computer

scientist with Bell Labs for 35 years. He is

most famous for having assisted Ken

Thompson in inventing Unix and for being

the primary creator of the C programming

language (with Brian Kernighan in 1972).

Ritchie is also a parent of another operating

system, called Plan 9, that is well-known to

the community of people who develop

operating systems. He is currently head of

the System Software Research Department

at Bell Labs, where he is working on a new

operating system called Inferno.

Dennis M. Ritchie’s home page: www.cs.

bell-labs.com/who/dmr/.



8

Chapter 1

B
u

t 
Fi

rs
t,

 a
 L

it
tl

e 
H

is
to

ry

Beyond Unix: Other Open Systems

Other open-source technologies are also

helping to revolutionize the information

infrastructure of society. 

◆ HTML—The ease of creating documents

using HyperText Markup Language drove

the growth of the Web. Anyone viewing a

Web page can see, copy, and modify the

underlying HTML. The HTML standard

is coordinated by the World Wide Web

Consortium (www.w3c.org/MarkUp/).

◆ Apache Web server (www.apache.org)—

By far the most popular Web server in the

world, Apache provides a huge variety of

configuration options and can be altered

easily to add new ones. Mac OS X comes

with Apache (see Chapter 14, “Installing

and Configuring Servers”). 

◆ Perl (www.perl.org)—This powerful

scripting and programming language

(which comes with Mac OS X) is used in

scripts as short as 20 lines and in large

object-oriented applications with thou-

sands of lines of code.

◆ C—The programs listed in this sidebar and

those included in every version of Unix are

written—with few exceptions—entirely in

the C programming language. To learn

more, check out The C Programming

Language, by Brian W. Kernighan and

Dennis M. Ritchie (Prentice Hall, 1998;

http://cm.bell-labs.com/cm/cs/cbook/)—

the fundamental book on the topic—or

“The Development of the C Language”

(http://cm.bell-labs.com/cm/cs/who/

dmr/chist.html).

◆ ssh—The secure shell tool facilitates

secure connections between computers.

The open-source version is maintained by

the OpenBSD project (www.openssh.org).

◆ gcc—The GNU compiler collection

translates programming source code into

machine-executable applications. It’s

maintained by the Free Software Founda-

tion (www.gnu.org/software/gcc/gcc.

html). 

◆ Sendmail (www.sendmail.org)—Mac OS

X comes with a version of this common

mail server software, which you can use

to set up your Mac OS X computer to be

your own mail server.

For More on Unix History

◆ CrackMonkey (http://crackmonkey.org/

unix.html)—A history of Unix, including

a discussion of its important flavors.

◆ “The Evolution of the Unix Time-

sharing System” (http://cm.bell-labs.

com/cm/cs/who/dmr/hist.html)—

Coinventor Dennis M. Ritchie offers a

technical and social history of Unix.

◆ “Overview of the GNU Project” (www.

gnu.org/gnu/gnu-history.html)—A history

of the Free Software Foundation’s efforts to

create an open and free version of Unix.

◆ Open Source: Darwin (www.opensource.

apple.com/projects/darwin/)—Apple’s

official Darwin Project site, where you

can download source code and find links

to other related projects.

◆ Darwinfo (darwinfo.org)—General-

purpose site about Darwin, including

links to mailing lists.

◆ The GNU-Darwin Distribution

(http://gnu-darwin.sourceforge.net)—

Web site that “aims to be the most free

Darwin-based Unix distribution.”



9

What is Unix, and Why Is It Good?

H
o

w
 M

ac O
S

 X
’s U

n
ix D

iffers fro
m

 M
ac O

S
 9 

How Mac OS X’s Unix
Differs from Mac OS 9

The immediate, obvious difference between

Unix and Mac OS 9 is the user interface.

Until Mac OS X, the various graphical inter-

faces available to Unix users all fell short of

the elegance and polish to which Macintosh

users are accustomed. 

It is a tribute to the architecture of Mac OS X

that you can use it as the next Macintosh

operating system and never have to see any

significant Unix underpinnings. Never, that

is, unless you want to learn Unix.

From a more technical point of view, when

OS X is compared with OS 9 (and earlier

Macintosh operating systems), several

important differences stand out. As we

noted earlier, Unix uses protected memory

and preemptive multitasking, and has other

capabilities that let applications share mem-

ory, processors, and applications in a stable

and reliable way. 

As a result, it is hard for one misbehaving

application to affect any other application or

the operating system itself. Yes, applications

can still crash in Mac OS X, but rarely do

they take the whole OS down with them. Not

only will you suffer fewer crashes, but they’ll

impact your other work less.

Unix, and thus Mac OS X, is also a multiuser

operating system. It’s designed from the

ground up with the assumption that many

people will be using the computer, often

simultaneously. Just as the applications’

activities are kept separate, so too are the

actions of each user kept separate. Even if 50

people are using the Macintosh, it is hard for

any one of them to mess up the other ones.

Another way Mac OS 9 differs from Mac OS

X is the arrangement of files and folders

(called directories in Unix) and the way infor-

mation about each file is stored. 

You will also see something called Home

show up as a shortcut in the Finder naviga-

tion dialog box, the Save File dialog box, and

so on. This concept of each user’s home direc-

tory as the only place where you normally

create files is a thoroughly Unix idea arising

directly from Unix’s nature as a multiuser sys-

tem, and is a major change from Mac OS 9. 

Apple has strived to mask these differences

in Mac OS X, but they are still there, and you

must be aware of them if you want to do seri-

ous Unix work (or even just be a Mac OS X

“power user”).

In your day-to-day use of Mac OS X, you’ll

find that many of the ways it differs from

Mac OS 9 have more to do with the new Mac

interface, Aqua, than with Unix. For example,

the Dock is new to Mac OS X, but it isn’t a

“Unix change.” In this book, we’ll focus

specifically on the Unix characteristics of

Mac OS X, not the differences that come

from Aqua. 



What You Can Do with
Mac OS X and Unix 
What do you want to do? Do you want to

create movies with iMovie and make them

available over the Internet? With the Unix-

based Mac OS X, that task is easy: You sim-

ply drag the movies into the Sites folder in

your Home directory, then enable Web shar-

ing. Would you like to run your own radio

station? You can easily use your Mac OS X

machine to run the Icecast server, which pro-

vides powerful streaming-audio capabilities.

Do you want your schedule to be constantly

available to friends and family, your résumé

always accessible to potential employers?

You can provide all those things with greater

reliability on a Unix platform.

Beyond the foundation of increased stability,

flexibility, and openness, Unix brings a num-

ber of more specific features to Mac OS X

that are fundamental to the way you will use

it. Key among these is the way it supports

multiple users and multiple processes.

Accommodating multiple users

As we’ve said earlier, Unix is a multiuser envi-

ronment and intentionally keeps each user’s

actions separate to create a more stable envi-

ronment.

On a Unix system you are never alone (unless

you started the machine in single-user mode,

which we’ll discuss in Chapter 11; if you

already know what that means, keep quiet

until the others have a chance to catch up).

Unix assumes there are going to be many

users running programs on the system.

When you log in to a Unix system, you iden-

tify yourself with a user name and password

that have already been entered into the sys-

tem by an administrator (if you are working

on your own Mac OS X system, you will have

10

Chapter 1

W
h

at
 Y

o
u

 C
an

 D
o

 w
it

h
 M

ac
 O

S
 X

 a
n

d 
U

n
ix

created at least one account for yourself

when you installed the operating system).

This enables the operating system to keep

your files and actions separate from everyone

else’s, and is a major factor in Unix stability

and security.

✔ Tips

■ You can see a list of who is logged in to

your system using the command-line w

and who commands. See Chapter 11,

“Introduction to System Administration,”

for more information on using the w and

who commands.

■ You can see a list of all the user accounts

on the system with the Netinfo Manager

application (also covered in Chapter 11).

All of the files you create in the normal

course of using the system are “owned” by

you. Every file and every running program

(known as a process) on a Unix system is

owned by a user. All of the important system

files—that is, the ones that make up the

actual operating system—are owned by a

special super-user called root. The root

account is all-powerful, and you must exer-

cise great care when using it (see Chapter 11

for more on root).

Not every user account on the system is

intended for use by a human. Unix systems,

including Mac OS X, come with a number of

special user accounts with names like

“nobody” and “daemon.” The system uses

these accounts to own processes that should

not have the power of the root account.

Each regular user account on a Unix system

has its own area on the file system called its

home directory. This is where all of the files a

given user creates and owns are stored. Unix

keeps track of who owns each file and allows

(or disallows) various operations based on

the ownership of files.



11

What is Unix, and Why Is It Good?

W
h

at Yo
u

 C
an

 D
o

 w
ith

 M
ac O

S
 X

 an
d U

n
ix

Applications vs. Programs

All applications are programs—the terms

are synonymous. In this book we use the

term application to refer to complex pro-

grams used for a variety of related tasks—

for example, Adobe Photoshop is an

application for graphics manipulation. In

Unix you often see the term command,

which can refer either to an application

that handles some specific task (such as

copying files) or to a built-in feature of a

larger program or application. For example,

the command for copying files is the cp

command, which is in fact a small program.

The command to move from one folder

into another folder (directory in Unix

terms) is the cd command, which is actu-

ally part of a larger program called the shell.

See Chapter 5, “Using Files and Directories,”

for more on the cp and cd commands. 

Parents and children

Every process in Unix is the child of some

other process, except for that first process,

init, which is the mother of all processes.

This concept of processes having parents

and children comes up frequently in Unix.

When you log in to a Unix system, you start a

process that you alone own. The exact pro-

gram depends on which Unix system you are

using, and how you log in to it. This process

will be the parent (or grandparent, or great-

grandparent) of every process you start on

the system.

When you log in using the Mac OS X graphi-

cal user interface, you start a process called

WindowServer, which you own.

Every program you run will have the Window-

Server process as an ancestor. In other words,

if you start up an application such as BBEdit,

a popular text editor, then BBEdit’s parent

process will be WindowServer. If you start up

the command-line interface (the Terminal

application), you might then start more pro-

grams using the Terminal application. Those

programs will have Terminal as their parent,

and WindowServer as their grandparent, and

so on.

So, using your Mac as a single-user system,

you might have several dozen processes 

running. 

Preemptive multitasking

On Unix systems, you might not only have

multiple programs running, but you might

also have multiple copies of the same pro-

gram running. Even with just a single person

logged in, running a few applications, several

dozen processes will be running at any given

moment, each with its own separate memory

allocation. In fact, the operating system

keeps a number of different processes run-

ning even if you are not doing anything.

When the machine starts up, the initial

process (called init), which is owned by the

super-user root, begins. The init process then

starts many other processes, which are also

owned by root. 

✔ Tip

■ You can see a list of all the processes on

your system using the ps and top com-

mands. See Chapter 11 for more informa-

tion on monitoring system usage.



Figure 1.3 This is how the path of the FileMaker Pro application would look on the Mac OS X filesystem.

/Applications (Mac OS 9)/FileMaker Pro 5 Folder/FileMaker Pro

Files and the filesystem

Unix brings a number of changes to the Mac

OS with regard to files and the filesystem (see

the sidebar “What Is a Filesystem?” for its

definition).

From the user’s point of view, the most

prominent changes (as compared with Mac

OS 9) involve the handling of file security,

storage of files, and the use of a different syn-

tax for describing a file’s location.

Files and security 

On an old Mac OS system, you could alter or

delete any file. You could put files from the

System Folder in the Trash and cause all kinds

of trouble, even accidentallly. On a Unix system,

every file is owned by some user. The operating

system restricts the ability to create, change, or

delete files based on ownership, so that one

user cannot alter or delete files created by

another user, and you are unlikely to cause any

serious damage to the operating system (the

exception: the root user can do anything). 

Folders are called directories 

What Mac users call a folder Unix users call a

directory. A directory that is inside another is

called a subdirectory. It is important to know

which directory you are “in,” because when

you’re working from a command line there is

no visual cue, such as an active window. Know

the concept of the “current directory” in

Unix—that’s where you’re currently working. 

12

Chapter 1

W
h

at
 Y

o
u

 C
an

 D
o

 w
it

h
 M

ac
 O

S
 X

 a
n

d 
U

n
ix

File paths use / instead of :

In Mac OS 9 and earlier, file path designa-

tions use colons. In Mac OS X, Unix uses the

/ (slash) instead of the : (colon) to separate

the parts of a file path. In Mac OS 9, then, the

path of the FileMaker Pro application would

look like that in Figure 1.2.

In Mac OS X, the same path would appear as

shown in Figure 1.3.

Notice that the name of the hard drive 

doesn’t show up anymore. In Unix, drives

don’t have names. The Mac OS X Aqua inter-

face does have names for drives, and they do

show up in the Finder, thanks to some tricks

of the Mac OS X Finder, but at the underlying

Unix/Darwin level, even in Mac OS X, drives

don’t have names.

Unix treats the entire filesystem as if it were

one big disk. There are ways to see which

disks contain which files, but usually when

dealing with files in Unix, you only pay atten-

tion to the full pathname of the file. See

Chapter 5, “Using Files and Directories,” for

more about using pathnames.

Even with the differences cited above, the

Unix filesystem is organized similarly to

what you are used to on a Mac. Use / instead

of : in your pathnames, and think of your sys-

tem as a Macintosh that has only one disk.

Think of that disk as being named /, and

then you’re close to the way Unix thinks of

files, directories, and subdirectories. 

Figure 1.2. This is how the path of the FileMaker Pro application would look on the Mac OS 9 file system.

MyBig Disk:Applications (Mac OS 9):FileMaker Pro 5 Folder:FileMaker Pro



13

What is Unix, and Why Is It Good?

W
h

at Yo
u

 C
an

 D
o

 w
ith

 M
ac O

S
 X

 an
d U

n
ix

Get used to filename extensions

Another difference between Mac OS 9 and

Mac OS X is in OS X’s use of filename exten-

sions—you know, those things at the end of

all the filenames on the Web and on PCs,

such as .html, .txt, and .jpg (this is no sur-

prise given which operating system the origi-

nal Web servers used and the one most Web

servers still use today).

From the very start, the Mac OS has cleverly

kept track of a file’s characteristics: what type

of file it is, what application opens it, if the

file is being used by another application, if

the file is locked. Unix doesn’t store as much

information about each file along with each

file. In particular, Unix has no fundamental

concept of a file’s “type” or “creator” (Mac OS

X does, but only for files that were created

with Mac file information).

Unix’s filename extensions indicate a file’s

type. This is not as powerful as the Macintosh

approach, but it is the standard in the Unix

world. Mac OS X tries to have it both ways,

and in the Mac spirit uses the old Mac

approach in some cases and the standard

Unix approach in other cases. But in order to

play well with others, Mac OS X incorporates

filename extensions. You can decide whether

to display them in the graphical interface, but

when you use the command line they will

always be there.

Files created by Macintosh applications will

have the Macintosh creator and type attrib-

utes, but files created by non-Mac applications,

including all non-Mac Unix applications, will

have only the filename extension (if any) to

indicate what kind of file they are.

What Is a Filesystem?

In Unix the term filesystem (Unix’s termi-

nology for file system) is used in two ways.

The first way is more informal and refers

to the complete hierarchy of directories.

The second way refers to a single storage

area that has been formatted for use by

the operating system. The “single storage

area” is often, but not always, a single disk

partition. Filesystems contain directories

and files but never other filesystems.

Example of the first form: “/ is the root

directory of the filesystem.”

Example of the second form: “It is com-

mon to have two or more filesystems on

the same physical disk.” 



How You Will Be Working
with Unix 
You are probably already using your

Macintosh for a variety of tasks, working in

applications that take advantage of the

lovely Aqua interface. As you dig below the

surface and start using the Darwin layer of

Mac OS X, you will be performing operations

that are either unique to Unix or better

suited to the Unix environment.

Working from the command line

The command line is the primary user inter-

face in Unix. Most Unix software packages

are designed to be installed and configured

from the command line.

It is from the command line that you will be

installing software and manipulating files

(copying, moving, renaming, and so on). You

might even start editing files using the com-

mand-line tools.

One of the most powerful aspects of the com-

mand line is in how it allows you to connect a

series of commands together to accomplish

some task. Figure 1.4 shows an example of

connecting three commands together in

order to find all the files in a folder that con-

tain the word success and email the resulting

list of filenames to yourself. 

14

Chapter 1

H
o

w
 Y

o
u

 W
il

l 
B

e 
W

o
rk

in
g

 w
it

h
 U

n
ix

 

Figure 1.4 This command line shows how to connect commands together—in this case, finding all the files in a
folder that contain the word success and then emailing the resulting list of file name to yourself. 

find . -type f -print0 | xargs -0 grep -l success | Mail address@hostname.com &

The command line in Figure 1.4 is composed

of three major parts separated by the vertical

bar (|) character. (Note: this command line

requires that you have activated the email

server as described in Chapter 14, “Installing

and Configuring Servers.”)

The first part uses the find command to pro-

duce a list of the names of all the files (not

folders) in the current folder (by using the 

-type f option) and all those inside it. The

output of that command is passed (piped) via

the | character to the next command, xargs

(arguments). This applies the grep (search)

command to each filename in turn, searching

the file for the string “success” and producing

a list of the filenames where the string was

found. That second list is piped 

to the third part, the Mail command, which

sends the list to the specified email address.

The final ampersand (&) tells Unix to do all

this “in the background,” which means that

we do not have to wait for the processes to

finish before issuing a new command—we

can go on with our work at the command

line. Chapter 2, “Using the Command Line,”

takes you further into the details of using the

command line.

Under Mac OS X, the most common way 

to get to the command line is through the

Terminal application (found in the Utilities

folder under Applications). 



15

What is Unix, and Why Is It Good?

H
o

w
 Yo

u
 W

ill B
e W

o
rkin

g
 w

ith
 U

n
ix 

Editing files from the 
command line

In order to really harness the power of Unix,

you will want to learn how to edit files using

a command-line text editor. Unix is file-cen-

tric and uses text files to control almost

every aspect of software configuration.

Although it’s difficult for most Mac users to

learn at first, editing files from the command

line lets you change files without leaving the

command-line environment in which most

of your Unix work will occur. Furthermore,

the ability to edit files from the command

line will make it easy for you to work on

other Unix systems besides Mac OS X, some-

thing you are almost certain to do once you

get further into Unix.

Programming and scripting

Developed by programmers for program-

ming, Unix is—not surprisingly—an excel-

lent programming environment, and many of

its strengths (and some of its weaknesses)

stem from that heritage. 

Although you don’t need Mac OS X or Unix

to create software, if you’re using Unix, you’ll

probably at least poke around with program-

ming—perhaps first modifying existing pro-

grams and then moving on to create new

ones. In addition to its terrific stability, Unix

provides an environment in which it’s easy to

connect varying tools in an equally various

number of ways. And when you need them,

you can create new commands, extending

your tool kit as you work. 

You can also write simple scripts to auto-

mate tasks—for example, to perform back-

ups, automate the transfer of files to other

systems, calculate the rate of return on an

investment, or search text for certain phrases

and highlight them. You could write scripts

to create a small database-backed Web site,

or to convert batches of images for use on

the Web, or to analyze voter-registration or

campaign-contribution records. Some users

never stop creating new applications: We call

them programmers.

Mac OS X comes with tools to create and run

programs in AppleScript, Perl, Bourne shell,

and a couple of other Unix scripting lan-

guages. The Mac OS X developer tools include

software that allows you to create programs in

C, C++, Objective-C, and Java as well.

(Throughout this book we assume that you

have in fact installed the Developer Tools.)

With the exception of AppleScript, none of

these programming languages were available

to Mac users in the past unless they installed

third-party software (such as MacPerl or the

CodeWarrior compiler). The Mac OS X

continues on next page

Unix Commands Have 

Strange Names

Unix commands often have very terse

obscure and/or arbitrary-sounding

names. Examples: awk, grep, and chmod.

This contributes to Unix’s ( justly earned)

reputation as a difficult operating system

to use, requiring users to memorize a

great deal in order to become proficient. 

Because you are probably itching to know

how those three commands got their

names, here’s the story: awk, a text-process-

ing system, got its name from the initials 

of the three people who created it. grep, a

command for searching inside text, got its

name from the commands used in an ear-

lier program to “globally find a regular

expression and print.” chmod is a command

to change the permissions associated with

a file and means “CHange MODe.”



16

Chapter 1

H
o

w
 Y

o
u

 W
il

l 
B

e 
W

o
rk

in
g

 w
it

h
 U

n
ix

 

Developer Tools also include the Project

Builder and Interface Builder applications,

which are graphical interfaces for developing

software projects written in C, Objective-C,

C++, and Java.

Shell scripts

The vast majority of Unix scripting is done

using shell scripts. These are written using the

language of a Unix shell. A Unix shell is the

program that provides the command-line

interface you will be using. A shell accepts

typed commands and provides output in text

form; it is a “shell” around the operating sys-

tem. The Bourne shell is one of the oldest com-

mand-line interpreters for Unix (see Chapter 2,

“Using the Command Line”). Virtually all of

the scripts that control what happens when

Unix machines start up are written in the

Bourne shell scripting language, including

most of the Mac OS X startup files.

If you are excited or impatient, you probably

want to take a look at one of the Mac OS X

system startup scripts right now! Here’s how

to do it:

To view a system startup script:

1. Open an OS X (not Classic) text editor—

for example, the Textedit application,

which you can access through Textedit in

the Applications folder.

2. Open the file /System/Library/

StartupItems/Network/Network. 

The file will be opened read-only, so you

need not worry about damaging it. 

You are looking at the script that configures

your network connection on startup 

(Figure 1.5).



Figure 1.5 The script /System/Library/StartupItems/Network/ Network configures your network connection on startup.

#!/bin/sh

##

# Apache HTTP Server

##

. /etc/rc.common

StartService ()

{

if [ “${WEBSERVER:=-NO-}” = “-YES-” ]; then

ConsoleMessage “Starting Apache web server”

apachectl start

fi

}

StopService ()

{

ConsoleMessage “Stopping Apache web server”

apachectl stop

}

RestartService ()

{

if [ “${WEBSERVER:=-NO-}” = “-YES-” ]; then

ConsoleMessage “Restarting Apache web server”

apachectl restart

else

StopService

fi

}

RunService “$1”

17

What is Unix, and Why Is It Good?

H
o

w
 Yo

u
 W

ill B
e W

o
rkin

g
 w

ith
 U

n
ix 



Figure 1.6 You might use this script in Mac OS X to make a group of files open in Photoshop when they’re double-
clicked from the Finder.

#!/bin/sh

# This a comment. Comments help make the code easier to read.

# This script takes one or more file names as arguments and

# sets the Creator Code for each one to Photoshop.

GETINFO=”/Developer/Tools/GetFileInfo”

SETFILE=”/Developer/Tools/SetFile”

#  8BIM is the Creator Code for Photoshop

NEW_CREATOR=”8BIM”

changed_files=0

total_files=0

for file in “$@” ;   # All the command-line arguments are in $@

do

total_files=`expr $total_files + 1`;  # keep track of total

if [ -w “$file” ];  # If the file is writeable...

then

creator=`$GETINFO -c “$file”`; # Get the Creator code of this file

if [ !  “$creator” = \”$NEW_CREATOR\” ]

then

# Set the file to have the new creator code

$SETFILE -c “$NEW_CREATOR” “$file”

changed_files=`expr $changed_files + 1`

fi

else

echo “skipping ‘$file’ — not writeable”

fi

done

echo “Checked $total_files files”

echo “Set $changed_files files to have creator $NEW_CREATOR”

skipped=`expr $total_files - $changed_files`

echo “Skipped $skipped files”

18

Chapter 1

H
o

w
 Y

o
u

 W
il

l 
B

e 
W

o
rk

in
g

 w
it

h
 U

n
ix

 

Figure 1.6 on the next page is an example of

a script you might use in Mac OS X to make a

group of files open in Photoshop when they’re

double-clicked from the Finder. Using this

script and some additional Unix commands,

you could instruct your machine to find every

file ending in .jpg within a directory (folder)

and have those files launch Photoshop when

double-clicked from the Finder. And by alter-

ing the script, you could do the same thing

for just those files that already have the Mac

type code for JPEGs, GIFs, and others. (The



Figure 1.7 This Perl script code listing outputs plain text files in reverse, with the last line first. 

#!/usr/bin/perl

# This a comment. Always use comments.

#

# This script takes one or more file names as arguments and

# outputs the files one line at a time, in reverse order.

# I.e. The last line of the last file comes out first.

while ( $file =  pop(@ARGV) ) {

open FILE, “$file”; # Open the file for reading

@lines = <FILE>;    # Read the entire file into @lines

close FILE;

while ( $line = pop(@lines) ) {

print $line;

}

}

19

What is Unix, and Why Is It Good?

H
o

w
 Yo

u
 W

ill B
e W

o
rkin

g
 w

ith
 U

n
ix 

last line comes out first. This would be diffi-

cult, if not impossible, using traditional

Macintosh applications.

Java

Although still fairly new, Java has already

spread far and wide—partly because it’s pow-

erful and partly because its creator, Sun

Microsystems, has promoted it very hard.

Programs written in Java can run on only one

kind of machine, but that machine is a vir-

tual machine—a piece of software. Because a

virtual machine is software, it can be written

for different hardware platforms. Java virtual

machines exist for every major operating 

system, and an increasing number of small

hardware devices (such as cell phones) are

able to run Java code. Programs written in

Java can often run without changes on many

different platforms. The Mac OS X Developer

Tools come with a Java compiler and a Java

virtual machine. The Java programming lan-

guage has a large set of tools for creating

graphical user interfaces and for communi-

cating across networks.

type code is a four-character code that identi-

fies the type of each file. It’s a pre–Mac OS X

feature that many Mac applications still use.)

This example may look scary now, but don’t

worry—once you learn some Unix, it will

make more sense. For now, just let it wash

over you, and understand that when you’ve

read this book (and thus know a bit of Unix),

you’ll be able to create this sort of script fairly

easily. (See Chapter 9, “Creating and Using

Scripts,” for more on creating shell scripts.)

Perl 

Perl is one of the most popular programming

languages in the world. Although you can

use it to build large, complex programs, it is

easy enough to learn that most people begin

using it to write small utility programs or

CGI programs for Web sites.

Because Perl excels at text processing and

can easily interact with SQL databases, it’s

ideal for building Web pages as well as other

data-manipulation projects.

Figure 1.7 is a code listing of a Perl script

that outputs plain text files in reverse—the



20

Chapter 1

H
o

w
 Y

o
u

 W
il

l 
B

e 
W

o
rk

in
g

 w
it

h
 U

n
ix

 

C 

The C programming language is to program-

ming what Greek is to literature—the lan-

guage of heroes. C is the language in which

Unix as we know it was written, and most of

the utility programs used with Unix were

written in C. In the Unix world, the people

who invented Unix could be thought of as

heroes, and they wrote their great works in C.

The core of every Unix operating system (the

kernel) is written almost entirely in C, as is

virtually every common Unix utility program,

such as ls, pwd, and grep. Many important

Unix applications, such as Sendmail and the

Apache Web server, are also written in C. In

addition, C++, Objective-C, and a number of

other important languages stem from or are

related to C.

Because so much Unix software is written in

C, you’re likely to at least modify existing C

code if you spend much time working on the

Unix platform. 

Interacting with other 
Unix machines

Much of what people do with their Unix sys-

tems involves connecting to other Unix sys-

tems—for example, logging on to a machine

that hosts a Web site to edit files and install

software, or arranging to automatically

transfer files between two Unix machines. 

To ease this process, Mac OS X comes with a

widely used program called ssh (Secure shell)

that facilitates secure (encrypted) connections

to other machines over the Internet. With ssh

you can connect from the command-line

interface to other Unix machines and the

information exchanged is protected from

being read if intercepted. Other programs also

use ssh to work over encrypted connections. 

Running servers

One of the biggest differences between Mac

OS 9 and Mac OS X is that the latter allows

you to reliably run servers (such as a Web

server or an email server) on your computer.

You could run these types of servers on Mac

OS 9, but because OS 9 was much more likely

to crash, you probably wouldn’t consider it for

serious use. Also, most of the software avail-

able for these kinds of servers on Mac OS 9

was closed-source proprietary software, so if

the vendor changed its business plan or went

out of business, you were left with unsup-

ported software. With Mac OS X, you can use

the widely installed, open-source applications

that most servers on the Internet use.

You might run a server to provide a service 

to the rest of the world. Or you might run

one because you’re developing a system that

uses it—for example, a shared calendar/

event-planning system—and you want to

test it on your local machine and/or network

before deploying it. There are all kinds of

servers; the following are just a few of those

available to you as a Mac OS X user.

Apache Web server

Apache is the most popular Web server in the

world—that is, more Web sites use Apache

servers than any other. Apache is highly con-

figurable, so it can be adapted to many differ-

ent situations and specific requirements.

Apache comes installed in Mac OS X.

Icecast audio server

Icecast (www.icecast.org) is an open-source

audio-streaming system for the Internet.

Fairly easy to install and configure, Icecast

allows you basically to turn your Mac into an

Internet radio station.



21

What is Unix, and Why Is It Good?

H
o

w
 Yo

u
 W

ill B
e W

o
rkin

g
 w

ith
 U

n
ix 

Using other Unix applications

In addition to the specific applications men-

tioned above, there are thousands of Unix

applications available. Most are free, some

are commercial packages, some are open

source. With Mac OS X you can use many 

of these existing applications to monitor 

network status, analyze data such as Web-

server log files, run mailing lists, create Web

publishing systems, and more.

Because there are so many, we can’t list even

a tenth of them. Below are a few that give

some sense of the variety available, plus links

to places where you can find more.

Samba Windows file-sharing
software

Samba lets you share files from your Macintosh

with Windows users over a network. The

name Samba comes from SMB (Server

Message Block), which is the Windows file-

sharing protocol. 

SQL database engines

If you are a Mac database user, you have heard

of FileMaker Pro, which is a great database

with a great user interface. But FileMaker Pro

doesn’t understand SQL (Structured Query

Language), which is what all the big serious

databases use. Most database-backed Web

sites use SQL databases.

A number of SQL database engines are avail-

able for Mac OS X, including MySQL,

PostgreSQL, and ProSQL.

Image manipulation with GIMP

GIMP (GNU Image Manipulation Program)

(www.gimp.org) is a bargain-basement Unix

version of Photoshop. Even though GIMP is

not as powerful as the main commercial

alternative, it is free, open-source software,

and runs on many Unix platforms. Using

GIMP requires that you install X Windows

(see below). 

X Windows

X Windows (www.osxgnu.org/software/

Xwin/) is the underlying mechanism for pro-

viding a graphical user interface on most

Unix systems. Mac OS X uses a different

method, Apple’s proprietary Aqua interface,

but many Unix programs were built for X

Windows, so if you install it, you can use

these other programs (such as GIMP).

You can use X Windows to provide a graphi-

cal display for Unix programs that are run-

ning on other machines over the Internet.

That is, if you are running X Windows on

your Mac, and you have an account on

another Unix machine somewhere on the

Internet, you may be able to run software on

the remote machine and see the graphical

display on your Mac. 

Email list management with
Majordomo

Majordomo (www.greatcircle.com/major-

domo/) is a free, open-source application for

managing multiple email. To use it, your

Macintosh must be set up as an email server.

With Majordomo, you can run dozens of

mailing lists, with different configurations for

each one. For example, one list may require

that new subscribers be added by the list

owner, while another may allow anyone to

self-subscribe via email. Majordomo, which

was written in Perl, supports list archives and

digests as well as many other features. 



22

Chapter 1

H
o

w
 Y

o
u

 W
il

l 
B

e 
W

o
rk

in
g

 w
it

h
 U

n
ix

 

Where to find more

Thousands of Unix programs are available,

with more being created every day. A couple

of places to look:

The FreeBSD Ports Collection

This collection (www.freebsd.org/ports/)

offered more than 6,700 open-source applica-

tions as of spring 2002. These are all Unix

programs that work on a number of different

Unix versions. Because the Darwin layer of

Mac OS X is based largely on FreeBSD, most

of these programs should work on Mac OS X. 

The easiest way to install many of the

FreeBSD programs (and other Unix pro-

grams) on Mac OS X is to use the Fink pro-

gram, which is covered in Chapter 13,

“Installing Software from Source Code.” 

Mac OS X Apps

This Web site (www.macosxapps.com) pro-

vides a large and growing collection of Mac OS

X applications, most of which have graphical

interfaces and can be installed in a manner

familiar to Mac users. Many of these programs

are not “pure” Unix programs in that they

make use of proprietary Mac OS X features

such as the Aqua interface. Still, many take

advantage of the Unix core of Mac OS X, and

so this site is a good place to explore. 


